
I I I I I I
I I I I II
I Change Ringing

Where Math and Music Meet I
I I Caroline Dulay I I

I I I I I I

I I I I I I

i

CHANGE RINGING: WHERE MATH AND MUSIC MEET

Eine Maturitätsarbeit an der

KANTONSSCHULE LIMMATTAL

vorgelegt von

CAROLINE DULAY

Klasse M6i

im Fach Mathematik

betreut von

Andreas Pfenninger

2024

Caroline Dulay

Zusammenfassung

In dieser Arbeit wurde die englische Tradition des Change Ringings (Wechselläutens)
historisch, mathematisch und anhand eines Python-Programms untersucht. Im Change
Ringing werden Glocken von einer Gruppe Glockenläuter*innen nach einem bestimmten
Schema geläutet, sodass alle möglichen Reihenfolgen der Glocken genau ein Mal vorkom-
men. Dabei können die einzelnen Glocken von einer Reihenfolge zur nächsten nicht mehr
als eine Position in der Reihe nach vorne oder nach hinten verschoben werden. Ideal-
erweise wechseln alle Glocken regelmässig ihre Position in der Reihe, damit es für die
Glockenläuter*innen spannend bleibt. Dieser Brauch wurde im 17. Jahrhundert entwick-
elt und wird bis heute praktiziert. Change Ringing ist ein Schnittpunkt der Musik und
der Mathematik und beide Aspekte werden hier betrachtet. Schliesslich wird beschrieben,
wie ein Programm, welches alle 24 erlaubten Sequenzen von Reihenfolgen für vier Glocken
finden kann, programmiert wurde.

Abstract

In this project, the English tradition of change ringing is explored historically, mathe-
matically, and with Python programming. Change ringing is the ringing of church bells
by a group of ringers in a prescribed pattern, so that a set of bells is rung in all possible
sequences, without moving the position of any bell in the sequence more than one position
forwards or backwards. Ideally, all bells change positions regularly in order to keep the
sequence interesting for the bell ringers. This tradition originated in England in the 17th

century and is still practiced today. Change ringing sits at the intersection of music and
mathematics, and both of these aspects will be explored here. In addition, the process of
creating a Python program that was able to find the 24 valid change ringing sequences
for a set of four bells is described.

i

Caroline Dulay

Contents

Abstract i

1 Introduction 1

2 History 2
2.1 A Short History of Bells . 2

2.1.1 The Earliest Bells in Asia . 2
2.1.2 Beginnings of Bells in Europe . 2
2.1.3 Bells in Early Christianity . 2
2.1.4 Bells on the British Isles . 3

2.2 Bells in the Middle Ages . 3
2.2.1 Casting and Hanging Bells in the Middle Ages . 3
2.2.2 Importance of Bells in the Middle Ages . 3
2.2.3 St. Dunstan of Canterbury . 3

2.3 Bells in the Modern Day and Other Uses for Bells . 4
2.3.1 Baptism of a Bell . 4
2.3.2 Carillons . 4
2.3.3 Decorations and Inscriptions on Bells . 5
2.3.4 Bell Demise . 6

2.4 The History and Practice of Change Ringing . 7
2.4.1 The Beginnings of Change Ringing . 7
2.4.2 Basic Ringing . 8
2.4.3 Methods . 9
2.4.4 Change Ringing Societies . 9
2.4.5 Is Change Ringing Music? . 10

3 Mathematics 11
3.1 Basic Definitions of Change Ringing . 11
3.2 Excursion into Group Theory . 12
3.3 Graphical Illustration . 15

3.3.1 Examples for 4 Bells . 16
3.4 Finding Hamiltonian Cycles . 19

4 Programming 20
4.1 Beginning to Program . 20
4.2 Programming Changes “by Hand” . 21

4.2.1 Change on 3 Bells . 21
4.2.2 Change on 4 Bells (Reverse Canterbury) . 21

4.3 Random sequences . 23
4.3.1 Function to Swap Items: swap(pos) . 23
4.3.2 Choose Random Swap: randomswap(possible swaps) 23
4.3.3 List to Word: convert(s) . 24
4.3.4 Main Loop . 24
4.3.5 Checking Whether a Sequence is an Extent . 24
4.3.6 Output . 25

4.4 Program to Find Valid Extents on 4 Bells . 26
4.4.1 Function to Test Rows: test rows . 26
4.4.2 Function to Build Extents: extend rows . 26
4.4.3 Main Loop to Build Extents . 28
4.4.4 Output . 28
4.4.5 Audio . 30

5 Discussion and Conclusions 31

6 References 32

List of Tables 34

ii

Caroline Dulay

List of Figures 34

Acknowledgments 35

Einhaltung rechtlicher Vorgaben 35

A Appendix: Full Process of Programming 36
A.1 Starting With Changes on 3 Bells . 36

A.1.1 Printing a List . 36
A.1.2 Swapping the Positions of Two Items in a List . 36
A.1.3 Extent on 3 Bells . 36
A.1.4 Extent on 3 Bells With Loop . 36

A.2 Programmed Extents on 4 Bells . 37
A.2.1 Plain Bob . 37
A.2.2 Reverse Canterbury . 37
A.2.3 Double Court . 38

A.3 Generating a Random Set of Changes . 38
A.3.1 Create Change on 3 Bells . 38
A.3.2 Creating a Random Set of Changes on 3 Bells . 39
A.3.3 Random Changes on 4 Bells of a Random Length 40

A.4 Extents on 4 Bells . 41
A.4.1 Program Finds All Possible Extents on 4 Bells . 41
A.4.2 Program Finds Extents on 4 Bells With Sounds . 43
A.4.3 Output Printing All Extents . 45

iii

Caroline Dulay

1 Introduction

For this project I wanted to research something that combined my interests in music and mathematics.
My uncle, who double majored in mathematics and music and studied in England for part of his studies,
suggested the topic of change ringing and I thought it sounded interesting. Change ringing is the English
art of ringing church bells in defined sequences. It originated in England around the 17th century, when
the technology for hanging bells developed so that a single bell could be rung exactly once with one pull
on a rope. Bell ringers became interested in ringing bells in different patterns. One sequence of bells
is called a change and for n bells there are n! different permutations, or ways to arrange the bells in a
sequence. For the ringers the next step was to arrange the changes in such a way that they could ring
all the possible permutations of their n bells consecutively. Starting with the bells in descending order
of pitch, a special change called rounds, they swap two consecutive bells in the sequence to create a
new change. They do this until they have gone through all the ways to order the bells and come back to
rounds with the bells in order of descending pitch. A cycle of all the permutations is called an extent
and change ringers have found various methods to order the permutations for n > 3. [1]

In this project I investigated the questions:

• What is the history of change ringing?

• How can change ringing be mathematically described?

• How can the changes be generated by a computer program?

Due to the interdisciplinary nature of this paper, I used many different sources. The main source for the
mathematical section is a bachelor thesis Campanology - Ringing the changes, written by Fabia Weber, a
student at the ETH Zürich, supervised by PD Dr. Lorenz Halbeisen [1]. It is a deep dive into the group
and graph theory related to change ringing. For the historical section, I used a paper on the history
of bells in Europe [2] for the early history; for the more general history and the description of change
ringing itself I used multiple books on ringing: The History and Art of Change-Ringing [3] and Church
Bells and Bell-Ringing [4]. In addition to these books, the films Still Ringing After All These Years: A
Short History of Bells [5] and The Craft of Bellringing [6] were very helpful. In the programming part, I
consulted various online fora and internet pages. In particular I used the website GeeksforGeeks to help
me construct my Python code.

This paper is written in English because change ringing is an almost exclusively English art, so sources
on change ringing and the technical terms used in change ringing are all in English. In addition, my
mathematical education has been in English for the last two years, because I am in an immersion class.
Therefore it was easier for me to look for mathematical information in English as well.

1

https://www.geeksforgeeks.org/

Caroline Dulay

2 History

2.1 A Short History of Bells

2.1.1 The Earliest Bells in Asia

Bells have existed for such a long time that it is hard to imagine a world without them. They are classified
as idiophones: Instruments which sound through vibration of the instrument itself, without the help of
strings, membranes or columns of air [7]. Bells are likely descendants of early rattles, which were first of
natural origin, such as shriveled fruit with seeds, but were later made artificially by filling dried, hollow
pouches, such as dried animal bladders, with seeds or small pebbles. Eventually rattles, and later bells,
were made of ceramic. [2]

Both the oldest ceramic rattles and the oldest ceramic bells that have been studied by archaeologists
were found in China and date to the early third millennium BC. After ceramic bells come bells made out
of bronze, which might have been a result of bronze pots being used as musical instruments in religious
rituals. Larger bells, which were rung by striking the outside wall, and small bells, which were rung with
a bell tongue inside the bell, came to be used for a variety of settings, from animal herding to the high
courts. [2][8]

The first bronze bells were hammered from a flat sheet of copper. Later, the Chinese learned to cast
bells out of liquid metal and to tune them to ring particular musical tones. The bell makers continued
to perfect their craft and soon a bell was as much a work of art as it was a musical instrument. The
knowledge of bell making also started to spread to cultures westwards of China. [8][3][2]

2.1.2 Beginnings of Bells in Europe

Figure 1: Bell from Her-
culaneum, 1st century
AD cf. [2], figure 10

By the second half of the first millennium BC, the people in the Greco-Roman
cultural area had bells called tintinnabulum in Latin that were used for pur-
poses such as rituals and household signaling. In the household, they were
used for calling the servants, waking the slaves and as doorbells. There were
also larger bells called aes that were used for ritual purposes and were believed
to have mystical powers, such as being able to break spells and scare away
evil forces. The oldest hand bell from this period was found while excavating
Herculaneum, one of the cities buried under the ashes of the Vesuvius in 79
AD (see figure 1). [2]

2.1.3 Bells in Early Christianity

When Christianity became the official religion of the Roman Empire in the 4th

century AD, rituals and traditions were just being formed and there were many
local variants of Christianity. Some took inspiration from local ceremonies and
etiquette or from pagan rituals. Hand bells were used by western Christians
during funeral processions, just as the ancient Greeks had done. Another use
for bells was calling the people together for prayer: These were not the church
bells we are used to today, but rather one person running through the streets
ringing a small bell. [2]

As liturgical forms became standardized in the 6−7th century AD, the local variants started to disappear.
The first use of bell-like instruments in the liturgy was probably in the 6th century. There is a description
of a bell hanging from the ceiling of Tours Cathedral near the altar of St. Martin, which is thought to
have been used in a similar way to an altar bell today1. Bells were also used to mark the division of the
monastic day into canonical hours, each of which began with a prayer. [2]

1the altar bell is used “to draw attention to the precise moment when transubstantiation – the conversion of the bread
and wine into the body and blood of Christ – takes place” [9]

2

Caroline Dulay

2.1.4 Bells on the British Isles

Figure 2: The Cloc ind Édachta, the bell of St.
Patrick, said to be the oldest preserved bell from
Ireland [10]

St. Patrick is associated with bringing hand bells
to Ireland. For him, bells were an important part
of being a missionary. They were primarily used
to call believers together and he would give his
disciples a bell when he sent them as missionaries
to a new area. These bells, called Celtic hand bells,
consisted of two pieces of metal for the body with a
handle on top (as seen in figure 2). As Christianity
spread, these bells than made their way to England
with the missionaries. They were thought to have
special powers, like being able to terrify demons
and get rid of storms. Those of holy men were even
carried into battle as a sign of God’s protection.
[2][5]

2.2 Bells in the Middle Ages

2.2.1 Casting and Hanging Bells in the
Middle Ages

As the missionaries settled down and built abbeys, there came a need for larger and more resonant bells
[5]. Medieval bell founders used methods the Romans had used to cast bronze statues to cast their bells.
First, a wax model was created and a mold was created around it. The molds were then fired to melt the
wax out, and bronze was poured into the mold in its place. When the bronze bell had cooled, it could
be removed from the mold and tuned. These cast bells were not very large at first: The largest bell from
the early period had a diameter around 30 cm. These bells may have, for example, been hung on the
wall of a church and rung by means of a rope. [11]

The exact uses for bells in this period remain unknown, partly due to the myriad of words in medieval
texts that might indicate the use of a bell. The most common word for bell is campanum, but the words
clocca2 and glocca, especially in Irish texts, and tintinnabulum, adopted from the Romans, are also used
[2]. Another word, signum, which translates directly translates to “sign” might also indicate the use of a
bell. [11]

2.2.2 Importance of Bells in the Middle Ages

Bells grew in size and importance and by the 12th century, bell towers were commonplace [11]. In large
churches, there were even multiple bells. These bells were used in the Church for many reasons. There
was usually a sermon bell, a signal to the congregation that a sermon was about to start. The Sanctus
bell was rung during the Sanctus3 and at other important times during the liturgy [14]. The Passing bell
was sounded to call people to pray for the departing soul of a neighbor and was followed by the death
knell, the bell announcing their death. [4]

Bells also had secular functions, for example the market bell regulated the hours of business, the curfew
bell indicated the start of curfew and the fire bell warned of a fire in town [4]. Another interesting bell
is the pancake bell, which was rung on Shrove Tuesday, the day before Ash Wednesday, and which some
interpret as a signal to stop work and prepare pancakes [15]. Additionally a landowner could increase his
social rank by building a church with a bell tower on his land [3].

2.2.3 St. Dunstan of Canterbury

St. Dunstan, the patron saint of bell ringers, was a prominent religious figure in the 10th century. Born
in Baltonsborough, south of Bristol, he was a gifted craftsman and scholar and became an advisor to the
court of King Athelstan, who is regarded as the first King of England. Later he decided to become a
monk at the Abbey of St. Mary in Glastonbury. While there, he used his (relatively large) inheritance to
improve the church and gain influence in the kingdom: Eventually he became Archbishop of Canterbury,

2This is a stem of the word clock, derived from bell, because bells told the time before the invention of clocks [12]
3“an ancient Christian hymn of adoration sung or said immediately before the prayer of consecration in traditional

liturgies” [13]

3

Caroline Dulay

effectively the leader of the Church in England. His connection to bells comes with his interests in
music and knowledge of metalworking, which he used to experiment with the design and methods of
casting bells. He was canonized after his death and his other patronages include blacksmiths, goldsmiths,
locksmiths, musicians, and silversmiths. [16]

2.3 Bells in the Modern Day and Other Uses for Bells

Figure 3: The parts of a church bell [17]

Church bells today bear a strong resem-
blance to the bells of the Middle Ages
(see figure 3). The bells rung before ser-
vices today are descendants of the ser-
mon bell. In some churches, there are
also still bells, usually hand bells, which
are still rung during the transubstantia-
tion4. Even though we now have clocks
to tell the time, many bell towers still
ring quarter and full hours. In Switzer-
land, the ringing of bells is regulated
locally. In the city of Zürich, for ex-
ample, the bells ring at 7 o’clock in the
morning, at 11 o’clock for lunch and at
dusk in the evening [19]. The earliest
that bells still ring in the morning is
in Maschwanden, Canton Zürich, where
they ring at 4:45 a.m. for 3 minutes ev-
ery morning but Sunday [20].

2.3.1 Baptism of a Bell

Another tradition that survives to this day in the Roman Catholic Church is the tradition of baptizing a
new bell. This tradition was originally connected to the bell’s supposed magical power: Bells were said to
be able to ward off evil spirits and storms, which they clearly could not have done without the Church’s
blessing. For the baptismal ceremony, the bell is hung on a low frame so the bishop can walk all the
way around it. The bishop blesses the bell with holy water, salt and holy oil and psalms are chanted. In
some places the bells even have godmothers and godfathers. After the ceremony there is a community
celebration. [21]

2.3.2 Carillons

In some places, sets of bells are hung together to form a carillon. A carillon is a keyboard instrument built
into a bell tower that plays bells instead of plucking a string like a harpsichord or pushing air through
a pipe like an organ. In a carillon, there are at least two octaves of tuned bells tuned chromatically and
their clappers are attached to ropes, which are connected to the keyboard. The keyboard is set up in a
similar way to an organ but instead of the keys as one would find on a piano or an organ, the keyboard
is made up of pegs that are struck with the bottom of a closed fist. As with an organ there can also be
a pedal keyboard, which controls the lowest octave of the top keyboard. [22]

In Switzerland, the canton of Wallis has kept another type of carillon alive. The Walliser Carillon has
only on average 3 - 6 bells, which can swing back and forth and also have a rope attached to their
clappers. The ropes are threaded into the ringing chamber, so the bells can be rung by one ringer with
foot pedals, their hands and even their elbows. One bell was often swung along as a bass accompaniment,
rung by a board mounted on the stock (yoke) of the bell on which ringers can stand to make the bell
swing. [23]

4The part of the mass where “the Eucharistic elements at their consecration become the body and blood of Christ while
keeping only the appearances of bread and wine” [18]

4

Caroline Dulay

2.3.3 Decorations and Inscriptions on Bells

Every large bell is a hand crafted work of art, so it is common to give it an individual identity. Commonly
a bell will be marked with its name, the emblem or initials of its founder, and a prayer or verse from the
Bible. Bells were also commonly decorated with patterns on the rim, shoulder and crown. [21]

Figure 4 shows a bell from the Evangelical Reformed Church in Maschwanden, Switzerland, whose sound
I used in the programming part of this project. On the rim the name of the founder, Keller, and the
place of founding, Unterstrass, can be seen. On the waist is a verse from Psalm 22. Below this quote
there is a wreath of flowers and above it is an angel to protect the bell. On the shoulder of the bell there
are elaborate leaf designs and the canons have detailed faces of old men on them.

Figure 4: The largest in the belltower of Maschwanden, Switzerland
Inscription:
ICH WILL DEINEN NAMEN
MEINEN BRÜDERN VERKÜNDEN
INMITTEN DER GERMEINDE
WILL ICH DICH LOBEN
PS. 22. 23.
(“I will declare your name to my people; in the assembly I will praise you.” [24])

5

Caroline Dulay

2.3.4 Bell Demise

Even bells do not last forever. The oldest bells still in use are hundreds of years old, but not all bells are
so lucky.

After King Henry VIII decided to break ties with the Catholic Church in Rome, the new Church of Eng-
land saw many new reforms. Thomas Cromwell, who carried out these reforms, declared the monasteries
unnecessary; the official excuse was that the monks and nuns were corrupt and immoral and were not
helping the poor as they were supposed to. In reality, the King’s finances were not doing very well and
with the dissolution of the monasteries he was able to appropriate their property for himself. In this
process many monastic bells were melted down or given or sold to churches in the area. [5][4][25]

More dramatically, many bells were lost during the wars in the 20th century. The fate of bells in the
First World War varied by country. Because metals were essential for making guns, in March 1917 a
decree was issued by the government in Germany that bells were to be collected and melted down. For
many, this act of turning the bells into artillery was very disturbing, because it gave the bells quite a
different meaning. In the First World War around 44% of German bells were melted down. In Great
Britain, regulations were introduced limiting bell-ringing to an act of warning. Some say that this silence
was deafening, but the end of the war brought back the bells in all their glory. On the day of the defeat
of the Germans, November 11th 1918, the bells across Great Britain tolled to mark the end of the war.
Some bells in Russia were taken from their towers to be stored at Nikolsy Monastery near Moscow. Even
though this silenced them, they were kept safe for the duration of the war. [26][27]

Figure 5: Glockenfriedhof in Hamburg’s harbor [28]

In the Second World War, the National
Socialist German Workers’ (Nazi) Party
confiscated the bells not only in all its
occupied territories, but also in Ger-
many. The seized bells were graded
with a system ranging from A to D. The
bells ranked A had been cast most re-
cently and were melted down first, and
the bells categorized B and C soon fol-
lowed. But the bells in category D, cast
before 1740, were spared and treated
like art. In addition, each bell tower was
left with one bell to ring in an emer-
gency. In total around 175’000 bells
were seized and of those it is estimated
that 150’000 (67 of the bells seized) were
melted down. Some communities buried
their bells before the Nazis took them
so that they could not be melted down
and some of these are still being found
to this day. [29][27]

In Italy, a prewar agreement had been made with the Vatican that sought to protect half of the bells in
church towers, but the other half was therefore not safe from being taken. But as in Germany, each bell
tower was left with one. The confiscated bells were broken up in Italy and sent to Hamburg, because the
Italian smelting plants did not have enough capacity. The two largest refineries were in Hamburg along
with many collection points for bells, known as bell cemeteries or Glockenfriedhöfe. [29][27]

With carillons being very important musical instruments in both Belgium and the Netherlands, there
were a lot of bells to take. A carillon consists of at least 23 bells and in the First and Second World
Wars, many of them were destroyed. It is said that two thirds of the bells in Belgium were taken by the
Nazis. As if confiscating the bells were not enough, the Nazis commissioned small bells from foundries in
the Netherlands bearing the inscription: “the bells too are fighting for a new Europe.” These bells were
then given to the leading Nazis who had played key roles in the seizures. [27]

Somehow the bells of Norway, Denmark and Luxembourg remained mostly untouched. In France, the bells
were deemed cultural heritage and the Vichy government offered the country’s bronze statues instead.
Due to bombing raids and other attacks, even some French bells did not survive, but many made it
through the war. In Britain, the decision was made that church bells should be rung only in the case

6

Caroline Dulay

of a German invasion. After an allied victory at El Alamein, Churchill ordered all the church bells of
England to ring out. [27][5]

2.4 The History and Practice of Change Ringing

2.4.1 The Beginnings of Change Ringing

Figure 6: The evolution of methods of hanging bells and up and down strokes on the different mounts
[30]

Around the time of the English Reformation, the technology for hanging bells was also changing. When
the monastic bells were relocated, they were hung on newly invented quarter and half wheels instead of
on simple levers (see figure 6). This made them easier to ring, but bell ringing still required a great deal
of strength. In addition, a bell could be started and kept in motion by its ringer, but bells could not
be rung in a specific sequence. With the introduction of full wheels (see figures 6 and 7), what is now
known as change ringing became possible. A bell on a full wheel can be rung deliberately and, with the
help of the stay on the wheel (see C in figure 7), can pause in an upside-down position to wait for the
next stroke. [3] The rope that controls the bell ringing is guided by a wheel, which serves as a track into
which the rope winds and unwinds as the bell swings. On the side opposite the wheel is the stay, which
rests against a slider when the bell is in the upside-down position. The stay is intentionally the weakest
link in the system: If the rope is over-pulled, the stay will break, but can be replaced easily.

Figure 7: Bell hung on a full wheel in a wooden frame [3]

7

Caroline Dulay

In change ringing, a set of bells is hung on full wheels on a stock mounted in a frame of wood or metal.
Each individual bell rope gets threaded through a hole in the belfry, where the bells are hung, to a ringing
chamber below. The bells are always hung so that they swing in different directions because if they swung
together, the force they created while swinging would be enough to rock and even break the bell tower.
When they face in different directions, they still exert forces on the tower, but not all on one axis, so
there is less danger to the tower, bells, and ringers. [3][6]

2.4.2 Basic Ringing

Figure 8: The two strokes, that can be used to ring
an upset bell [3]

In order to ring changes, bells first have to be set in
an upside-down position. This is accomplished by
ringing up the bell, letting its momentum carry it
higher and higher with every stroke. There are two
strokes, as seen in figure 8, that can be done with
a full wheel: The hand stroke, which is the stroke
in which the rope is uncoiled from the wheel and
hangs in a loop at the end; and the back stroke,
in which the rope re-coils onto the wheel and the
ringer is only holding the end of the rope in his
hands at the end. Each stroke results in one ring
of the bell, and the ringer can influence the tim-
ing of the rings based on the timing of the rope
pulls. This control, however, has its limits: Dur-
ing change ringing, the bell does not come to rest
against the stay, but stays in motion as the rope
on the wheel coils and uncoils. [3][4][6]

In change ringing, each bell is rung by a single
ringer. The bells are all numbered with the highest
pitched bell, the treble, being number 1. The
lowest bell is named the tenor and is bell n in a

group of n bells. The first thing a new ringer learns after learning how to control their bell is how to ring
rounds: The ringers coordinate their movements so that the bells are rung in order from the highest- to
the lowest-pitched bell (see definition 3.1.1). [1][3]

After learning to ring rounds, a ringer learns to ring call changes. Due to the momentum of the bells,
a bell can only change positions with the bell rung directly before or directly after itself. When the bell
ringers ring call changes, one of the ringers acts as a kind of conductor, telling the other ringers when
a change is to be made in the ringing order. Usually, each change is repeated multiple times before the
next one is called. [31]

8

Caroline Dulay

2.4.3 Methods

Finally, ringers learn methods that connect sequences of changes in a systematic way. For example, one
of the easiest ways of moving a bell through a set of changes is plain hunting.

Figure 9: Blue bell plain hunting Figure 10: Green and red bell dodging

A bell is hunting up, when it moves in successive changes from the first to the last place and hunting
down, when it moves back to the start. In figure 9, the blue bell hunts up first and then hunts down.
It stays in the same place for one change in the middle, because here two of the other bells would have
to switch to create a new permutation in the next change. Two bells dodge with each other when they
meet while hunting in opposite directions and change places three times before resuming their hunting
(see figure 10) [31]. [3]

Methods are used to ring extents, or sequences in which all possible permutations of n bells are played.
If the number of bells is larger than 7, it is rather inconvenient (as seen in table 1) to ring full extents:
For example to ring the 3’628’801 changes in an extent on 10 bells would take 84 days. Instead, peals of
at least 5000 changes are rung. The most common number of bells is eight, with the first seven ringing
changes and the tenor always striking last. The ringers learn these methods by heart and play them
without any sheet music or other aids. When ringing they then have to know their place in the next
change and remember who should be ringing before them. They have to see the other bell ringers in
the room, who could be next to or across from them. This skill is called ropesight and is developed
over time. Someone with good ropesight can monitor all the ropes at once while ringing their own part.
[4][6][21]

Interestingly, it took less than a century for the first notions of change ringing to develop into an estab-
lished art form. According to the first published set of rules for change ringing, Tintinnalogia5, which
was published in 1668, change ringing had been developed in fifty or sixty years before its release [32].
In the book, a number of different methods to ring bells are described. Just nine years later the man
who printed Tintinnalogia, Fabian Stedman, wrote his own book on ringing. Campanalogia6 is Stedman’s
improvement of Tintinnalogia, with more peals and easier explanations of the topic [33]. The ground
rules and methods laid out in these books are still followed and rung today [5].

2.4.4 Change Ringing Societies

Change ringers often organized themselves in societies and guilds. These societies keep track of the
peals rung by their members and organize events. One of the oldest and most prestigious societies
is The Ancient Society of College Youths. It has existed since 1637. Fabian Stedman, the author of
Tintinnalogia, was a member of this society. [21][34]

Today, change ringing societies exist mainly in England, but groups of ringers also practice in other
parts of the world. Many older people take up ringing after retirement, but there are also groups of
younger change ringers at many universities. For many, change ringing is also a source of friendships and

5Full title:Tintinnalogia, or, the Art of Ringing (Wherein is laid down plain and easie Rules for Ringing all sorts of
Plain Changes. Together with Directions for Pricking and Ringing all Cross Peals; with a full Discovery of the Mystery
and Grounds of each Peal. As Also Instructions for Hanging of Bells, with all things belonging thereunto.)

6Full title: Campanalogia: or The art of ringing improved (With plain and easie Rules to guide the Practitioner in the
Ringing all kinds of Changes, to which is added, great variety of new peals.)

9

Caroline Dulay

community. The Central Council of Church Bell Ringers, an umbrella organization for change ringing
societies, support and encourage ringing and has many resources available for new and experienced ringers
alike. [5][6][35]

2.4.5 Is Change Ringing Music?

Is change ringing music? This is an interesting philosophical question with some depth. I will try to
answer it briefly here.

In R. Murray Schafer’s book The Soundscape [36], two fundamental concepts of music are defined: The
Apollonian and the Dionysian concepts. The Apollonian concept focuses on the sonic properties of the
world, looking at music from an external point of view, as if it were a reminder for humans of the harmony
of the universe sent by the gods themselves. In the Apollonian concept, music is basically organized sound.
From this point of view, music is exact, mathematical and serene, and it is associated with the concept of
a utopia or a harmony of the spheres. This concept is the basis of Pythagorean tuning and Schönberg’s
twelve-tone music. In the Dionysian concept, on the other hand, music is portrayed as a subjective
emotion. Here music is an irrational concept stemming from humans themselves. The Dionysian concept
is the basis for the musical expression one can find in the Romantic period, with the many expressive
devices used from this period onward such as dynamics, tempo fluctuations and tonal coloring. In the
Dionysian concept, music can be anything if it is put into the context of a musical performance meant
to convey the emotions of the performers to a listening audience. [36]

Most things we think of as music meet both definitions: Both a Taylor Swift concert and a Bach Passion
require both technical competence and emotional investment from the performers. Change ringing, in
contrast, fits only one of these two concepts. It fits perfectly into the Apollonian definition of music:
It is organized and exceedingly mathematical, as I will show in the next section. It does not, however,
meet the Dionysian concept: Change ringing does not convey emotions and a listener would not go to
the ringing of a peal to listen to it as music. The goal is more to work together to ring a logical structure
rather than to perform for an audience. Change ringing is therefore both music and not music.

10

Caroline Dulay

3 Mathematics

3.1 Basic Definitions of Change Ringing

Definition 3.1.1. In change ringing we have n bells, where n ≥ 2. The bells are numbered 1 to n and
ordered by pitch in descending order. The bell with number 1, being the highest pitched bell, is called
the treble. The lowest pitched bell, n, is known as the tenor. A change is the ringing of the n bells in
a particular order or arrangement. In other words, a change corresponds to the ringing of a permutation
of [n], the ordered set containing all integers from 1 to n in their natural order. The special change 1 2 3
... n, in which the bells are rung in order of descending pitch, is called rounds. The first bell of a change
is defined as the lead. cf. [1], Definition 1.1.1

Definition 3.1.2. An extent consists of n! + 1 successive changes, satisfying:

(i) the first and last change are both rounds;

(ii) no other change is repeated (so that each possible change other than rounds is rung exactly once);

(iii) from one change to the next, no bell moves more than one position in its order of ringing (positions
1 and n are not adjacent, unless n = 2);

(iv) no bell rests in the same position for more than two successive changes;

(v) each bell (except perhaps the treble) does the same amount of ’work’ (hunting, plain hunting,
dodging, etc.);

(vi) The method employed is palindromic, or self-reversing

Conditions (iv) and (v) are occasionally relaxed in practice, but the other conditions are inviolable. cf.
[37], 1. Introduction

The different conditions are based on different concepts that change ringing has to fulfill. The first is for
musicality, the second for thoroughness and the third is based on the mechanical limits of bell ringing
(see 2.4.2, Basic Ringing). The fourth and fifth rules are in place to keep things interesting for the ringers
and the last rule follows from the fact that an extent is a cycle that can also be played in the opposite
direction. [37]

The majority of bell towers home to change ringers have a number of bells n ranging between 3 and 12.
The maximum number of bells ever to have been rung in change ringing seems to be 16. The odd-bell
extents receive names based on the maximum number of pairs of bells that can be interchanged in one
transition and the even-bell extents are named from smallest (4 bells, Minimus) to biggest (12 bells,
Maximus) in Latin [38]. [1]

Table 1: Assuming that 30 changes can be rung per minute, we obtain in the rightmost column the time
required to ring a given extent. cf. [1], Table 1.1

number of bells n name changes in extent n! + 1 time required to ring extent
3 Singles 7 14 seconds
4 Minimus 25 50 seconds
5 Doubles 121 4 minutes
6 Minor 721 24 minutes
7 Triples 5’041 2 hours 48 minutes
8 Major 40’321 22 hours 24 minutes
9 Caters 362’881 8 days 10 hours
10 Royal 3’628’801 84 days
11 Cinques 39’916’801 2 years 194 days
12 Maximus 479’001’601 30 years 138 days
16 20’922’789’888’001 1’326’914 years

So much time is required to ring an extent on over 7 bells, that a full extent on 8 bells has only been rung
once without changing the ringers during the extent, which is quite a feat. Due to the large amount of
time required to ring the extents, ringers of large numbers of bells focus on ringing peals instead.

11

Caroline Dulay

Definition 3.1.3. Let n > 7. A peal is composed of at least 5000 successive changes satisfying conditions
(i)-(iii) of Definition 1.2 Hence, a peal is nothing more than a partial n-bell extent. cf. [1], Definition
1.1.6

3.2 Excursion into Group Theory

The next step is to describe the extents themselves. We will use group theory to do so.

Definition 3.2.1. A group is an algebraic structure (G, ∗), in which G is a set and ∗ a binary operation
G×G→ G, (a, b) 7→ a ∗ b satisfying the following properties:

• Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

• Identity element: There exists an element e ∈ G such that for all a ∈M : a ∗ e = e ∗ a = a
(The identity for groups under multiplication is 1, under addition it is 0 (cf. [39], Definition 1.1.)).

• Inverse element: For every element a ∈ G, there exists an inverse element a′ ∈ G a ∗ a′ = a′ ∗ a = e.

Special cases

• Commutative group (ABELian group): For all a, b ∈ G: a ∗ b = b ∗ a

• Cyclic group: There exists an element a ∈ G such that every element of G can be expressed as a
power of a.

• Finite group: G is a finite set. The number of elements is called the order of the group.

cf. [40], 2.4 Algebraic Structures, Groups

Definition 3.2.2. A subgroup is a subset H of a group G that is closed under the operation of G (∗),
inverses, and contains the identity. It then becomes a group in its own right. Note that associativity is
inherited from the parent group and the other two axioms are verified by definition. cf. [39], Definition
2.1

Definition 3.2.3. Let f : A→ B be a function from the domain A to the range B.

• Injection: ∀x1, x2 ∈ A : x1 ̸= x2 ⇒ f(x1) ̸= f(x2).

• Surjection: ∀y ∈ B : ∃x ∈ A such that y = f(x).

• Bijection: f is injective and surjective, so ∀y ∈ B : ∃!x ∈ A such that y = f(x).

Figure 11: Illustration of three function types: injective, surjective and bijective cf. [41], Figure 4.6

12

Caroline Dulay

Definition 3.2.4. Let Ω be an arbitrary non-empty set; we shall often refer to its elements as points.
A bijection of Ω onto itself is called a permutation of Ω. The set of all permutations of Ω forms a
group, under the composition of mappings, called the symmetric group on Ω. We shall denote this
group by Sym(Ω), and write Sn to denote the special group Sym(Ω) when n is a positive integer and
Ω = 1, 2, ..., n. A permutation group is just a subgroup of a symmetric group. If Ω and Ω′ are two
non-empty sets of the same cardinality (that is there is a bijection α 7→ α′ from Ω onto Ω′) then the
group Sym(Ω) is isomorphic to the group Sym(Ω′) via the mapping x 7→ x′ defined by:

x′(α′) 7→ β′ when x(α) 7→ β.

In particular, Sym(Ω) ∼= Sn whenever |Ω| = n. cf. [42], section 1.2 Symmetric Groups

In change ringing, all permutations we examine are finite, even if the definition above theoretically in-
cludes both finite and infinite permutations.

Definition 3.2.5. There are two common ways in which permutations are written. First of all, the
mapping x : Ω→ Ω may be written explicitly in the form

x =

(
α1 α2 ... αn

β1 β2 ... βn

)
where the top row is some enumeration of the points of Ω and βi is the image of αi under x for each i.
The other notation is to write x as a product of disjoint cycles. A permutation c ∈ Sym(Ω) is called an
r-cycle (r = 1, 2, ...) if for r distinct points γ1, γ2, ..., γr of Ω, c maps γi onto γi+1(i = 1, ..., r − 1), maps
γr onto γ1, and leaves all other points fixed. cf. [42], 1.2 Symmetric Groups

Example 3.2.6. The best way to illustrate these definitions is by looking at an example. In this
example we will look at a permutation in the S6 group. S6 is the group of all permutations on the set
Ω = 1, 2, 3, 4, 5, 6 and has the cardinality |S6| = 6! = 720. We will be looking at a permutation σ that
maps 1 to 2, 2 to 3, 3 to 1, 4 to 6 and 6 to 4, whereas 5 stays in its original position. This mapping can
be written as (

1 2 3 4 5 6
2 3 1 6 5 4

)
alternately it can be written in cycle notation as σ = (123)(46). (Side note: this example is not a valid
transition in change ringing as 3, 4 and 6 “jump” more than one spot.)
Cycle notation can be used to denote valid transitions in change ringing. For example a change on 4
bells, where the first switches with the second, will be denoted as below A = (12).

To connect these concepts to change ringing we need to look at the definition of a change. As shown
in definition 3.1.1 a changes correspond to the ringing of permutations on n bells, so an extent is just
going through all the permutations in the group Sn, where only some swaps are allowed to be made. As
shown in the definition 1.2 i. ii. no change can be repeated, with the exception of the rounds at the very
beginning and end, so the members of an extent correspond to the members of Sn.

Another restriction put on the ringing, is the fact, that one bell is not able to move more than one position
in one turn, as shown in def 1.2 iii. So for an example of n = 4 bells, there are F4 − 1 = 4 possible
transitions: A = (12)(34), B = (23), C = (34), D = (12). With only these four different transitions one is
able to make quite a large number of different extents.

Definition 3.2.7. Let n ≥ 2. The number of possible transitions for n bells t(n) is given by

t(n) = Fn − 1.

where Fn is the nth Fibonacci number with the initial condition F0 = F1 = 1. cf. [1], theorem 3.2.2

13

Caroline Dulay

Table 2: Some extents on n = 4 bells (Minimus) cf. [1], Table 2.4

name of the method transition sequence t
Plain Bob (AB)3AC
Reverse Bob ABAD(AB)2

Double Bob ABADABAC
Canterbury ABCDCBAB
Reverse Canterbury DB(AB)2DC
Double Canterbury DBCDCBDC
Single Court DB(AB)2DB
Reverse Court AB(CB)2AB
Double Court DB(CB)2DB
St. Nicolas DBADABDC
Reverse St. Nicolas ABCDCBAC

Example 3.2.8. Let there be 4 bells I, I, I & I, where I is the treble, the highest bell, I

the second highest, I the second lowest and I the tenor or the lowest bell. The bells are also sized

accordingly, with I being the smallest and I the largest. If we ring these bells according to a Reverse
Canterbury Minimus method (DB(AB)2DC), the n! + 1 = 25 changes will be:

I I I I Rounds

I I I I D = (12)

I I I I B = (23)

I I I I A = (12)(34)

I I I I B = (23)

I I I I A = (12)(34)

I I I I B = (23)

I I I I D = (12)

I I I I C = (34)

I I I I D = (12)

I I I I B = (23)

I I I I A = (12)(34)

I I I I B = (23)

I I I I A = (12)(34)

I I I I B = (23)

I I I I D = (12)

I I I I C = (34)

I I I I D = (12)

I I I I B = (23)

I I I I A = (12)(34)

I I I I B = (23)

I I I I A = (12)(34)

I I I I B = (23)

I I I I D = (12)

I I I I C = (34)Rounds

14

Caroline Dulay

It is important to note that the Reverse Canterbury Minimus method is not technically an extent ac-
cording to definition 3.1.2. Condition (iv) of definition 3.1.2 is not fulfilled here, because the bell in the
last position stays there for 3 changes and not the maximum of 2 from the definition. This is the case
for many traditional change ringing methods.

3.3 Graphical Illustration

Definition 3.3.1. Let S ⊆ G be a subset of a group G. We say S is a generating set of this group if
there does not exist a proper subgroup of G containing S. So every element of G can be expressed as a
product of elements of S and their inverses. cf. [1], Definition 3.2.3, and [43], Definition 3.0.0

Definition 3.3.2. A directed graph Γ (sometimes also called digraph) consists of a vertex set V (Γ),
an edge set E(Γ) = V × V and a function, which assigns an ordered pair of vertices (v1, v2) to each edge
such that v1 is the tail and v2 is the head of this edge. cf. [1], Definition 3.2.4

Definition 3.3.3. Let G be a group with generating set S. The Cayley color graph of G with respect
to S, denoted by CS(G), is a colored directed graph such that the following three conditions hold:

(i) Every vertex of CS(G) corresponds to an element of the group G.

(ii) Every element s ∈ S is assigned to a color cs.

(iii) ∀g1 ∈ G, ∀s ∈ S the vertex corresponding to g1 is connected with the vertex corresponding to
g2 = g1s by a directed edge of color cs.

cf. [1], Definition 3.2.5

Definition 3.3.4. A path in a graph Γ that visits each vertex of V (Γ) exactly once is called a Hamil-
tonian path. If, in addition, the Hamiltonian path is a cycle, then we call it a Hamiltonian cycle. A
graph that contains a Hamiltonian cycle is called a Hamiltonian graph. cf. [1], Definition 3.2.11

Example 3.3.5. This is the Cayley graph for n = 3 bells. For three bells the only two possible changes
are (12) and (23), which makes a generating set S = {A = (12);B = (23)}. From any of the given
vertices, there is exactly one Hamiltonian cycle in the graph starting out from that vertex, so one could
theoretically start ringing from any of them and return to the original one. Even if there is only one
Hamiltonian cycle, there are two ways to ring the extent, as you could ring it forwards or backwards, or
in this case clockwise or anticlockwise. Although it does not matter where you start in this graph, for
demonstration purposes, the vertex corresponding to rounds is marked in figure 12 in blue.

Figure 12: The 3-bell Cayley graph CS(S3), where rounds are at the bottom left vertex and marked in
blue. cf. [1], Figure 3.1

Theorem 3.3.6. The number of transitions t needed to complete a Hamiltonian cycle in the digraph of
a symmetric group Sn is equal to the number of vertices |Sn| = n! that need to be visited in the cycle.

Proof. For every vertex that is visited in a given Hamiltonian cycle, there has to be a transition to said
vertex. As no vertex is left out, the number of transitions t needed to complete the cycle corresponds to
the number of vertices there are, which is the order of the Symmetric group |Sn| = n!.

15

Caroline Dulay

3.3.1 Examples for 4 Bells

For 4 bells the Cayley graph with the order of the bells on each vertex is shown in figure 13.

Figure 13: Verticies of the Cayley graph of CS(S4), showing the change corresponding to each vertex.
Rounds are marked in blue and framed with a box.

16

Caroline Dulay

Figure 14 shows the Cayley graph for S4 with the generating set S = {A = (12)(34), B = (23), C =
(34), D = (12)}. This graph shows all the possible transitions from one change to the next on four bells.

Figure 14: The 4-bell Cayley graph CS(S4) cf. [1], Figure 3.2

Within this graph one can now find Hamiltonian cycles as in CS(S3), only that in this case, not all the
possible transitions are always used in one given cycle. For example we can look at the extents shown in
Table 2.

17

Caroline Dulay

Figure 15: Here, the upper-left vertex of the inner hexagon of CS(S4) is labeled by rounds in dark
sky blue, so it is the start for all Hamiltonian cycles. The extents shown here are: Plain Bob Minimus
(((AB)3AC)3), Reverse Bob Minimus ((ABAD(AB)2)3), Double Bob Minimus ((ABADABAC)3), Can-
terbury Minimus ((ABCDCBAB)3), Reverse Canterbury Minimus ((DB(AB)2DC)3) (as seen in exam-
ple 3.2.8)6, Double Canterbury Minimus ((DBCDCBDC)3), Single Court Minimus ((DB(AB)2DB)3),
Reverse Court Minimus ((AB(CB)2AB)3), Double Court Minimus ((DB(CB)2DB)3), St. Nicholas Min-
imus ((DBADABDC)3) and to Reverse St. Nicholas Minimus ((ABCDCBAC)3). cf. [1], Figure 3.4

18

Caroline Dulay

3.4 Finding Hamiltonian Cycles

The Hamiltonian cycles problem is well known to graph theorists. According to Finding Hamiltonian
Cycles by Sridher Kaminani “To find a Hamiltonian cycle in a general graph is an NP-Complete problem
and no deterministic polynomial-time algorithm has been discovered to find a Hamiltonian cycle in a gen-
eral graph” [44]. In short, there is no efficient general algorithm to find a Hamiltonian cycle in a general
graph. But there are some approaches to find Hamiltonian cycles. One of these is the Steinhaus-Johnson-
Trotter algorithm. It generates permutations by using adjacent transpositions, so basically swapping two
places in the permutation. [44][45]

Example 3.4.1. To illustrate and explain the Steinhaus-Johnson-Trotter algorithm this example will
find all the permutations of S3 starting with 1, 2, 3. For this we will be using the concept of mobile
numbers. A number n in the permutation is mobile, iff n is greater than the number it is pointed to. For
the permutations, the largest mobile number k will move in the direction of its arrow and any arrows
above numbers > k will be flipped to point the other direction. This swap of the arrow will be denoted
as: ←→n . For example, the in the first row of the example below both 2 and 3 are both mobile numbers,
because 2 is pointed at 1 and 2 > 1 and 3 is pointed at 2 and 3 > 2. In this case the number that moves

k =
←−
3 , because it is the larger of the two numbers. After the third line, where k =

←−
2 , the arrow over 3

switches directions, because all the arrows over the numbers n > k switch directions. [46]

←−
1
←−
2
←−
3 mobile numbers: 2 < 3; k = 3 (1)

←−
1
←−
3
←−
2 ← 3: mobile number: 3; k = 3 (2)

←−
3
←−
1
←−
2 ← 3: mobile number: 2; k = 2 (3)

−→
3
←−
2
←−
1 ← 2;

←→
3 : mobile number: 3; k = 3 (4)

←−
2
−→
3
←−
1 3→: mobile number: 3; k = 3 (5)

←−
2
←−
1
−→
3 3→: no mobile numbers → all permutations have been found (6)

In this way, the Steinhaus-Johnson-Trotter algorithm can be used to find all permutations of any set.
For the full descriptions of the algorithm by S. M. Johnson and H. F. Trotter see references [47] and [48]
respectively. To come back to change ringing, this algorithm is also called the method of plain changes.
Note that steps (1) through (6) result in the sequence shown in figure 12. The method of plain changes
for n elements is the same as the Plain Bob method on n bells. The Steinhaus-Johnson-Trotter algorithm,
first published in the 20th century, was originally based on the change ringing method of plain changes,
which can be traced back to a transcription of a manuscript by Peter Mundy from 1653 in Morris’ The
History and Art of Change Ringing [3]. Shortly after this text had been published, Tintinnalogia [32]
was also published containing a long description of plain changes. [45] [49]

19

Caroline Dulay

4 Programming

The goal of this part of the project was to computationally generate valid change ringing sequences.

4.1 Beginning to Program

I chose to use Python for this project because it is one of the easier programming languages to learn and
use. I used the integrated development environment Thonny [50].

To start I wanted to simply be able to print a list of items.

1 z = [1, 2, 3] #define a list

2 print(z)

Output:

[1, 2, 3]

This is done by first defining a list (line 1) and printing it with the print() function on line 2.

After this the next important thing was to be able to swap two items in a list.

1 def swapPositions(z, pos1, pos2):

2

3 # Storing the two elements as a pair in a tuple variable as get

4 get = z[pos1], z[pos2]

5

6 # unpacking those elements

7 z[pos2], z[pos1] = get

8

9 return z

10

11 z = [1, 2, 3] #define a list

12 pos1, pos2 = 0, 1

13

14 print(z)

15 print(swapPositions(z, pos1, pos2))

This is done by defining a new function that swaps two elements. The function swapPositions(z, pos1,

pos2) takes inputs z, the list, and pos1 and pos2, the positions of the two items being swapped. For
the positions the numbering starts on the left with 0 and goes up to n − 1, where n is the number of
elements in the list. It is also possible to use negative positions, where the position -1 is equal to position
n − 1 and position 0 is position −n. The function above swaps the elements in the two given positions
and returns the updated list z. [51][52]

In the end this code prints:

[1, 2, 3]

[2, 1, 3]

20

Caroline Dulay

4.2 Programming Changes “by Hand”

After defining a function to swap the positions of two bells, I could program full extents by going through
and programming each transition individually.

4.2.1 Change on 3 Bells

For example, here is a program that prints a full extent for n = 3 bells.

1 def swapPositions(z, pos1, pos2):

2

3 get = z[pos1], z[pos2]

4

5 z[pos2], z[pos1] = get

6

7 return z

8

9 z = [1, 2, 3] #define a list

10 pos1, pos2 = 0, 1

11

12 print(z)

13 print(swapPositions(z, pos1, pos2))

14 print(swapPositions(z, pos1+1, pos2+1))

15 print(swapPositions(z, pos1, pos2))

16 print(swapPositions(z, pos1+1, pos2+1))

17 print(swapPositions(z, pos1, pos2))

18 print(swapPositions(z, pos1+1, pos2+1))

19 #Full extent on 3 bells

Output:

[1, 2, 3]

[2, 1, 3]

[2, 3, 1]

[3, 2, 1]

[3, 1, 2]

[1, 3, 2]

[1, 2, 3]

This output corresponds to a counterclockwise extent, as illustrated in figure 12, or the reverse of example
3.4.1.

4.2.2 Change on 4 Bells (Reverse Canterbury)

The following code implements the Reverse Canterbury Minimus method (see table 2).

1 def swapPositions(z, pos1, pos2):

2

3 # Storing the two elements

4 # as a pair in a tuple variable get

5 get = z[pos1], z[pos2]

6

7 # unpacking those elements

8 z[pos2], z[pos1] = get

9

10 return z

11

12 def swap0123():

13 swapPositions(z, pos1, pos2-1)

14 print(swapPositions(z, pos2, pos2+1))

15

16 def swap12():

21

Caroline Dulay

17 print(swapPositions(z, pos1+1, pos2))

18

19 def swap23():

20 print(swapPositions(z, pos2, pos2+1))

21

22 def swap01():

23 print(swapPositions(z, pos1, pos2-1))

24

25 z1 = [1, 2, 3, 4]

26 z = [1, 2, 3, 4] #define a list

27 pos1, pos2 = 0, 2

28

29 print(z)

30 for i in range(10):

31 swap01()

32 swap12()

33 swap0123()

34 swap12()

35 swap0123()

36 swap12()

37 swap01()

38 swap23()

39 if z != z1:

40 continue

41 else:

42 break

43 print(’done.’)

Shell:

[1, 2, 3, 4]

[2, 1, 3, 4]

[2, 3, 1, 4]

[3, 2, 4, 1]

[3, 4, 2, 1]

[4, 3, 1, 2]

[4, 1, 3, 2]

[1, 4, 3, 2]

[1, 4, 2, 3]

[4, 1, 2, 3]

[4, 2, 1, 3]

[2, 4, 3, 1]

[2, 3, 4, 1]

[3, 2, 1, 4]

[3, 1, 2, 4]

[1, 3, 2, 4]

[1, 3, 4, 2]

[3, 1, 4, 2]

[3, 4, 1, 2]

[4, 3, 2, 1]

[4, 2, 3, 1]

[2, 4, 1, 3]

[2, 1, 4, 3]

[1, 2, 4, 3]

[1, 2, 3, 4]

done.

This program is different from the previous program in two important ways. First, for an extent on 4 bells,
instead of using print(swapPositions(z, pos1, pos2)) for the main code, I defined new function for
each possible transition. Second, I used a for loop to create the full extent [53]. The for loop checks

22

Caroline Dulay

whether z, the current change, is the same as z1, which is defined to be rounds and is not changed by
the swap function. If z is not equal (!=) to z1, the loop will repeat. When it is equal to z1, the loop will
break and print done to show that the program is finished.

4.3 Random sequences

Next, I wanted to create a sequence of an arbitrary length, which starting with rounds and given the
ringable transitions (swaps) for 4 bells, could create a possible sequence. Here, the transitions are chosen
randomly and therefore the goal is not to create an extent, but simply to ring changes until rounds are
reached. The program does ensure that the same transitions do not happen twice in a row. The resulting
sequence will be of arbitrary length ≥ 4: The shortest possible sequence would be one of 4 changes with
the transition sequence being ACD or anagrams of it.

At this point the full code is getting long, so I will review only the relevant new functionalities. The full
code can be found in appendix A.3.3.

4.3.1 Function to Swap Items: swap(pos)

10 def swap(pos):

11 if pos == 3:

12 swapPositions(z, pos-3, pos-2)

13 print(swapPositions(z, pos-1, pos))

14 already_done.append(z.copy())

15 else:

16 print(swapPositions(z, pos+1, pos))

17 already_done.append(z.copy())

The definitions for the function swapPositions is taken from the previous code. Here, however, rather
than creating 4 different functions for the 4 transitions, this swap function takes a single input between 0
and 3 and implements the transition accordingly. The inputs 0, 1 and 2 swap the bells in the corresponding
position of the list with the one to its right. The first item in a list in python is 0, so swap(0) would
swap the first item in the list with the second one. The special case of swap(3) swaps both the first two
and the last two bells, because that is the fourth possible transition with 4 bells. The swap functions also
adds the new change to the list of permutations that have already been “rung”.

4.3.2 Choose Random Swap: randomswap(possible swaps)

19 all_possible_swaps = [0, 1, 2, 3]

20

21 def randomswap(possible_swaps):

22 selected_swap1 = random.choice(possible_swaps)

23 #print("selected swap = ",selected_swap1)

24 swap(selected_swap1)

25 Transition.append(selected_swap1)

26 next_swaps = all_possible_swaps.copy()

27 next_swaps.remove(selected_swap1)

28 return next_swaps

This is the function, which will choose at random what transition to make given the possible transitions
defined in the previous section. The function takes as an input the possible swaps that could be made
at this point in the sequence (possible_swaps), so that swaps do not repeat. The print function on line
23 was used to see whether the correct bells were being swapped; The # symbol is used to indicate a
comment, so this code is not executed.

23

Caroline Dulay

4.3.3 List to Word: convert(s)

30 def convert(s):

31 str1 = ""

32 return(str1.join(s))

The function convert(s), takes a list s of letters and returns a “word”. For example for s = [’h’, ’e’,

’l’, ’l’, ’o’], if it is put into print(convert(s)) the output will be hello. This function is used to
make the output more compact. [54]

4.3.4 Main Loop

34 z = [1, 2, 3, 4]

35 z1 = [1, 2, 3, 4]

36 already_done = []

37 Transition = []

38

39 print(z)

40 next = randomswap(all_possible_swaps)

41 for i in range(100):

42 next = randomswap(next)

43 if z != z1:

44 continue

45 else:

46 print("we’re back at the start")

47 break

The main loop starts by initializing z, the current change, which starts at rounds; z1, rounds, which is
used as above to check whether the sequence is finished; and already_done and Transition, which are
the lists which will collect the changes and the transitions, respectively, in one run of the program.

To start the process of changing, z is first printed, to signify the start of each extent on 4 bells with
rounds. For the first change, the program chooses the transition from all_possible_swaps. The value
it returns is stored as next, which is the list of the possible transitions to the next change. After this
initial swap comes the main loop to create the changes. It is a for loop that will repeat until the sequence
comes back to rounds, or reaches a length of 100 (an arbitrary value much longer than the length of a
valid extent).

4.3.5 Checking Whether a Sequence is an Extent

49 print(already_done)

50 already_done.sort()

51 print("sorted:", already_done)

52 print("length:", len(already_done))

53

54 for i in range(len(Transition)): # for same notation as campanology

55 if Transition[i] == 0:

56 Transition[i] = ’D’

57 if Transition[i] == 2:

58 Transition[i] = ’C’

59 if Transition[i] == 1:

60 Transition[i] = ’B’

61 if Transition[i] == 3:

62 Transition[i] = ’A’

63 print("A = (12)(34), B = (23), C = (34), D = (12)")

64 print("change:", convert(Transition))

65

66

67 perm = permutations([1, 2, 3, 4])

68 perm_list_tuple = list(perm)

69 perm_list_list = []

24

Caroline Dulay

70 for tup in perm_list_tuple:

71 perm_list_list.append(list(tup))

72 print("all permutations:", perm_list_list)

73 print("how many permutations?", len(perm_list_list))

74

75 if perm_list_list == already_done:

76 print(’The lists are the same’)

77 else:

78 print(’The lists are not quite the same’)

It is extremely unlikely in this case that the main loop will generate a valid extent, but since this is
relevant to my project I wrote some code to do this check in various ways:

• A simple check is the length of the list. A valid extent would have a length of 24, though not all
lists of length 24 are extents. (line 52)

• The list of transitions is also converted to letters according to the notation used in Campanology -
Ringing the changes [1], in order to facilitate the comparison of sequences. (lines 54-64)

• I also generate a list of all permutations using the permutations function of the itertools library
and compare it to the sorted list of permutations generated by the main loop. For a valid extent,
these two lists would be the same. (lines 67-78)

4.3.6 Output

Here is an example output of one run of this program. Note that because the transitions are randomly
selected, every run of this program will be different. While each of the transitions is valid, this result is
not a valid extent, because some of the changes are repeated.

[1, 2, 3, 4]

we’re back at the start

[[1, 3, 2, 4], [3, 1, 4, 2], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 3, 2], [1, 4, 2, 3],

[1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 1, 4], [3, 1, 2, 4], [3, 1, 4, 2],

[3, 4, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1],

[2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [4, 3, 1, 2], [4, 3, 2, 1],

[3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 4, 2], [1, 3, 2, 4], [1, 2, 3, 4]]

sorted: [[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 2, 4], [1, 3, 4, 2],

[1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 3, 1, 4], [2, 3, 4, 1],

[2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 1, 4, 2], [3, 1, 4, 2],

[3, 2, 1, 4], [3, 2, 1, 4], [3, 2, 4, 1], [3, 4, 1, 2], [3, 4, 1, 2], [3, 4, 1, 2],

[3, 4, 2, 1], [4, 1, 3, 2], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1], [4, 3, 2, 1]]

length: 29

A = (12)(34), B = (23), C = (34), D = (12)

change: BADBDABABDBCBCBCABCABADCABDCB

all permutations: [[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2],

[1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 1, 4, 3], [2, 3, 1, 4], [2, 3, 4, 1],

[2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1],

[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1],

[4, 3, 1, 2], [4, 3, 2, 1]]

how many permutations? 24

The lists are not quite the same

25

Caroline Dulay

4.4 Program to Find Valid Extents on 4 Bells

This last section of the programming part describes my final program, which includes an audible rep-
resentation of the changes. There are many steps between this program and the one before, but I will
not discuss them here. Some of them are in the appendix, where you can find several intermediate
programs.

The primary goal of this program is to find valid extents on 4 bells. It does this by making a transition
and checking it against the criteria from definition 3.1.1. After finding all valid extents, it chooses one at
random and uses recordings of the bells of Maschwanden to play the extent. The program was ultimately
run from the penguin terminal on my device, because I could not find out how to get Thonny to support
the audio.

For this program I will also not describe the full program, but rather the new functionalities not included
in the previous descriptions.

In this part of the program, I reached the limits of my programming capabilities and my father helped
me write a program that uses recursion to find the valid extents.

4.4.1 Function to Test Rows: test rows

The function test_rows is designed to test whether a new change can be added to the previous changes
so that the sequence still fulfills conditions (ii) and (iv) of definition 3.1.2.

23 def test_rows(previous_rows: list[list[int]], next_row: list[int]) -> bool:

24 if len(previous_rows) != 24 and next_row in previous_rows:

25 return False

26

27 for i in range(len(next_row)):

28 if (previous_rows[-2][i] == previous_rows[-1][i] and

29 previous_rows[-2][i] == next_row[i]):

30 return False

31

32 else: return True

The first thing it checks is if the row it is trying to add (next_row) is already in the list of previous
rows, so (ii) of definition 3.1.2 is fulfilled. Also the length of previous_rows has to be unequal to 24,
because rounds will be repeated in this special case at the end of an extent. (Line 40 in the definition of
extend_rows will check if the last change is rounds, which will filter out any false endings.) Secondly, this
code tests, for each of the positions of the next row, whether the bell rung in that position has changed
since the last two rows to fulfill (iv) of definition 3.1.2. If these two conditions from definition 3.1.2 are
fulfilled, the function returns true.

4.4.2 Function to Build Extents: extend rows

The recursive function extend_rows is the key to the search for valid extents among the 4 · 323 =
376, 572, 715, 308 potentially valid sequences. It takes three arguments: rows, the list of “changes” that
have been “rung” so far, positions, the list of positions (known in previous versions of the program as
swaps), that have been completed, and avail_pos the potential swaps that could happen next (see for
comparison possible_swaps in section 4.3.2). It returns a list of the lists of changes and a list of the
lists of swaps, as will be discussed further below.

36 def extend_rows(rows: list[list[int]], positions: list[int], avail_pos:

37 list[int]) -> tuple[list[list[list[int]]], list[list[int]]]:

38 result: list[list[list[int]]] = []

39 result_pos: list[list[int]] = []

40 if len(rows) == 25 and rows[-1] == [1, 2, 3, 4]:

41 # print(f’found it {rows}’)

42 return [rows], [positions]

43 if len(rows) >= 25:

44 print(f’overdone {rows}’)

45 return result, result_pos

26

Caroline Dulay

46 for pos in avail_pos:

47 # print(f’testing {rows} move {pos}’)

48 new_row = swap(rows[-1], pos)

49 if test_rows(rows, new_row):

50 # print(f’{len(rows)} - extending {rows} with {new_row}.’)

51 new_rows = rows.copy()

52 new_rows.append(new_row)

53 new_positions = positions.copy()

54 new_positions.append(pos)

55 all_possible_pos.copy()

56 new_avail_pos = all_possible_pos.copy()

57 new_avail_pos.remove(pos)

58 new_result, new_result_pos = extend_rows(new_rows, new_positions, new_avail_pos)

59 if new_result:

60 result.extend(new_result)

61 result_pos.extend(new_result_pos)

62

63 return result, result_pos

“Recursive” means that a function calls itself. A common example of a recursive function is one that
makes a list of all the files in a particular folder on a computer and all its sub-folders: It looks at the
items in the folder one at a time. When it encounters files it adds them to a list, and as it encounters
sub-folders it calls itself to open the folder and search further. [55]

In the case of extend_rows, the function builds potential extents one change at a time, and what the
function returns depends on whether a valid extent has been found. It returns different things in different
cases:

• If the length of a sequence is the length of an extent, 25, and the last element of the sequence,
rows[-1] is [1,2,3,4] or rounds, then a valid extent has been found and the inputs rows and
positions are returned (lines 40-42).

• If the sequence has grown longer than a valid extent or if the length of rows is 25 but rows[-1] is
not rounds, empty lists are returned (lines 43-35).

• If neither of the two conditions above are met, the program loops through the next available
transitions (line 46). If test_rows, described in section 4.4.1 above, returns True, indicating that
the transition is valid, the function extends the sequence of rows by that one change and calls itself
again based on the extended sequences and new list of possible transitions. If the recursive call to
extend_rows returns a valid result, the result is added to the list of the lists of valid extents.

• If no valid extents are found, line 63 will return an empty list. If valid extents have been found,
line 63 will return a list of valid extents.

The final return of this function will contain all of the valid extents that can be built from a single stem
of two changes (rounds and the result of one possible transition) as well as the lists of the transitions
needed to ring these changes.

27

Caroline Dulay

4.4.3 Main Loop to Build Extents

94 final_result: list[list[list[int]]] = []

95 final_result_pos: list[list[int]] = []

96 for pos in all_possible_pos:

97 #print(f’Starting with move {pos}’)

98 new_row = swap(z, pos)

99 new_avail_pos = all_possible_pos.copy()

100 new_avail_pos.remove(pos)

101 new_result, new_result_pos = extend_rows([z, new_row], [pos], new_avail_pos)

102 if new_result:

103 final_result.extend(new_result)

104 final_result_pos.extend(new_result_pos)

105

106 print("A = (12)(34), B = (23), C = (34), D = (12)")

107 for i in range(len(final_result)):

108 print(f’{convert(Translate_pos_alphabet(final_result_pos[i]))}’)

109 print(f’{final_result[i]}’)

110 print("number of valid extents:", len(final_result))

Now that extend_rows has been defined, it can be used in the main code that begins the recursion.
First, final_result and final_result_pos are defined as empty lists of lists of extents and transitions.
These lists will be filled with the lists of valid extents and transitions returned by extend_rows. Next,
the program loops through all the possible transitions and calls extend_rows for each of the short stems
beginning with rounds and continuing with each of the four possible transitions. extend_rows will, as
described above, return all of the valid extents that can be built from a single stem. These results are
added to the lists final_result and final_result_pos.

The main loop finishes by printing the valid extents as lists of transitions to ring the extent and as lists
of changes, and finishes by printing the number of valid extents found.

4.4.4 Output

The main loop finds 24 valid extents for n = 4 bells:

1 DABABABADABABABADABABABA

2 DABACABADABACABADABACABA

3 BADABABABADABABABADABABA

4 BADABACABADABACABADABACA

5 BABADABABABADABABABADABA

6 BABABADABABABADABABABADA

7 BABABACABABABACABABABACA

8 BABACABABABACABABABACABA

9 BACABADABACABADABACABADA

10 BACABABABACABABABACABABA

11 CABADABACABADABACABADABA

12 CABABABACABABABACABABABA

13 ADABABABADABABABADABABAB

14 ADABACABADABACABADABACAB

15 ABADABABABADABABABADABAB

16 ABADABACABADABACABADABAC

17 ABABADABABABADABABABADAB

18 ABABABADABABABADABABABAD

19 ABABABACABABABACABABABAC

20 ABABACABABABACABABABACAB

21 ABACABADABACABADABACABAD

22 ABACABABABACABABABACABAB

23 ACABADABACABADABACABADAB

24 ACABABABACABABABACABABAB

Interestingly, all 24 valid extents consist of three repeated sequences of transitions. The attentive reader

28

Caroline Dulay

will recognize three methods from table 2: Plain Bob (AB)3AC (line 19), Reverse Bob ABAD(AB)2

(line 15) and the Double Bob ABADABAC (line 16). The remaining 21 valid extents turn out to be
variations of these three patterns. For example the extent on line 12 C(AB)3A is a variant of Plain Bob
circularly shifted by one position. The Cayley graphs of the eight variants of the Plain Bob Minimus
are shown in figure 16. As noted in section 3.2 the remaining methods in table 2 are actually not valid
extents according to condition (iv) of definition 3.1.2.

Figure 16: The Cayley graphs of the eight variants of the Plain Bob Minimus

29

Caroline Dulay

4.4.5 Audio

The final task for the programming part was to create an audio representation of an extent.

3 from pygame import mixer

4 from pygame import time

112 choice = random.randrange(len(final_result))

113

114 print("randomly chose:", choice)

115 print(f’{convert(Translate_pos_alphabet(final_result_pos[choice]))}’)

116 print(f’{final_result[choice]}’)

117 chosen = final_result[choice]

118

119 mixer.init()

120 soundfiles = ["Treble1.mp3", "Bell2.mp3", "Bell3.mp3", "Tenor4.mp3"]

121 sounds = []

122 for s in soundfiles:

123 sounds.append(mixer.Sound(s))

124

125 def output(bell_output):

126 for i, bell in enumerate(bell_output):

127 print(bell, end = " ")

128 mixer.Channel(i).play(sounds[bell - 1])

129 time.wait(1000)

130 print("\n", end = "")

131

132 for i in chosen:

133 output(i)

134 print("we done")

135 time.wait(1000)

136 mixer.quit()

Lines 112-117 choose and print a result to play. One of the extents is chosen and later this one will
be played with audio recordings of bells. The actual choice it makes is the choice of a position in
final_result. choice (line 112) is a random integer within the length of final_result chosen with
random.randrange(len(final_result). The function random.randrange(stop)chooses an integer in
the range from 0 to the number given for stop [56]. After choosing the extent to play, the program prints
the position in the list of results of this extent along with the extent itself and its transitions.

For the audio output, I used the modules mixer and time from the Pygame library , which was designed
for programming games in Python [57]. The mixer module is used to load sound objects and control the
playback of the sounds. In the program, it is first initialized on line 119 and in the following line, the
names of the sound files are given. Lines 120 and 123 load the sound files for the 4 bells into the mixer

using the mixer.Sound(s) function. The audio files are saved in the same folder as the code and so that
they can be easily retrieved by the program.

The function output(bell_output) plays and prints a single change from the extent. The sounds are
played on different channels, so they can overlap. After a sound is played the program waits 1 second
(1000 milliseconds) before playing the next bell.

The main loop of the program simply loops through the changes and calls the output function to play
each change. At the end it waits so the last bell to sound has time to fade away before the mixer module
is closed.

Figure 17: Link to a demonstration of the program in action

30

https://youtu.be/3wbyjMRfHWE

Caroline Dulay

5 Discussion and Conclusions

For me, the best part of this project was its interdisciplinary nature. In the course of this one project,
I read texts from the 17th century, learned the basics of group theory and programming in Python, and
recorded bells in a Swiss bell tower.

The history of bells and bell ringing is fascinating and I have only been able to give an overview here. In
the course of my research, I learned many interesting things which did not make it into this report, for
example, how the change ringers have almost their own language for saying where a bell has to go next.
This is briefly touched on in section 2.4.3, in which the methods are described, but only a few words could
be explained there. I would particularly like to learn more about the methods used in change ringing and
how people compose them. My biggest regret in this project is that I was not able to attend a change
ringing session in person.

While working on the mathematical part of this project, I found that it was difficult to find definitions
that I could understand to use in this paper, because the sources I used either had definitions that were
too detailed or they went over the concepts only in passing, never really defining them. I needed to
consult a number of sources before I felt comfortable presenting the mathematical background in this
paper.

I would also like to learn more about the symmetries of the Cayley graphs in section 3.3 and how to
use Cayley graphs to find extents. The outputs of the final program were made into Cayley graphs (see
figure 4.4.4) and it is very interesting to see the fact that they are all symmetric in some sort of way. In
the future I would like to make Cayley graphs for other methods and larger numbers of bells to see, what
their graphs reveal.

My programming goals evolved over the course of the project. Originally, I wanted to write a program
which could create an extent or peal for n bells. This could have been done by implementing the
Steinhaus-Johnson-Trotter algorithm described in section 3.4. Instead, I decided that a more intriguing
problem was to look at all the ringable sequences for a given number of bells and find which of these
were valid extents. Even for four bells, there are three possible transitions from any given change, so
the number of potential extents is 4 · 323 = 376, 572, 715, 308. In the end I explored these by using a
recursive function that effectively tested whether a given sequence was valid while it was being built,
cutting off any sequences that were never going to generate valid extents before going through all 24
transitions. But extending my function even to five bells, which require 5! = 120 transitions to form
an extent, makes the computation too large to run in a reasonable amount of time. This would be an
interesting problem to revisit once I know more about programming. Nevertheless, I am proud of what
I was able to accomplish given that I started with very little knowledge of Python. In particular it was
satisfying that audio output of my program sounded like real recordings of change ringing.

If I had had more time, I would have edited my program again to make it more legible. At the moment,
there are not very many comments on what the program is doing and the variables could have better
names. Ideally, the code would be readable on its own, without explanatory text.

The interaction between the historical, mathematical, and computational parts of this project were also
very interesting. How did bell ringers in the 17th century solve a combinatorics problem practically?
After I had written my program, I noticed that the three Bob methods are really the only true extents
for 4 bells, but that because they each have eight different but equivalent variations there are 24 valid
extents for 4 bells. This brings up other interesting questions that I did not have time to pursue: Is there
a mathematical reason that all valid extents on 4 bells are repeated sequences of eight transitions? Is
there a reason that the number of valid extents was the same as the number of possible changes?

In conclusion change ringing is a fascinating subject with many different aspects and I have enjoyed
exploring it in this project.

31

Caroline Dulay

6 References

The visited on date of the references is given in the format month/day/year.

[1] Fabia Weber. “Campanology - Ringing the changes”. In: ETH Department of Mathematics (Aug. 2017).

[2] Gintautas Žalėnas. “Cum signo campanae.The origin of the bells in Europe.” In: (Aug. 2013), pp. 65–92.
issn: 1822-4555. url: https://www.academia.edu/22415048/Cum_signo_campanae_The_origin_of_the_
bells_in_Europe (visited on 09/05/2024).

[3] Ernest Morris. ’The History and Art of Change-Ringing’. London: Chapman & Hall Ltd., 1931. url:
https://www.whitingsociety.org.uk/old-ringing-books/morris-history-and-art-of-change-

ringing.html (visited on 04/25/2024).

[4] Thomas Leslie Papillon. Church Bells and Bell-Ringing. London: ”The Guardian”, 1909. url: https:
//www.whitingsociety.org.uk/old-ringing-books/papillon-church-bells-and-bell-ringing-

01.pdf (visited on 06/29/2024).

[5] Grace Chapman. BBC Four - Still Ringing After All These Years: A Short History of Bells. Dec. 2011.
url: https://www.youtube.com/watch?v=OR32AT1QaF8 (visited on 07/11/2024).

[6] Bellringingfilm. The Craft of Bellringing. Sept. 2014. url: https://www.youtube.com/watch?v=yLMiK-
TMyPI (visited on 04/30/2024).

[7] UW Ethnomusicology Archives. Idiophones - UW Ethnomusicology Archives - Library Guides at Uni-
versity of Washington Libraries. Aug. 2024. url: https://guides.lib.uw.edu/archives/idiophones
(visited on 09/05/2024).

[8] The National Bell Festival Inc. Bell History — National Bell Festival. url: https://www.bells.
org/bell-history (visited on 09/03/2024).

[9] Matthew Ernest. ASK A PRIEST. 2019. url: https://archwaysmag.org/when-and-why-do-the-
altar-servers-ring-a-bell-at-mass (visited on 09/05/2024).

[10] Medieval Histories. Early Medieval Irish Hand-Bells. Apr. 2017. url: https://www.medieval.eu/early-
medieval-irish-hand-bells/ (visited on 09/05/2024).

[11] John H. Arnold and Caroline Goodson. “Resounding Community: The History and Meaning of Me-
dieval Church Bells”. en. In: Viator 43.1 (Jan. 2012), pp. 99–130. issn: 0083-5897, 2031-0234. doi: 10.
1484/J.VIATOR.1.102544. url: https://www.brepolsonline.net/doi/10.1484/J.VIATOR.1.102544
(visited on 09/05/2024).

[12] Online Etymology Dictionary. clock — Search Online Etymology Dictionary. Aug. 2020. url: https:
//www.etymonline.com/search?q=clock (visited on 09/05/2024).

[13] Merriam-Webster Dictionary. Definition of SANCTUS BELL. url: https://www.merriam-webster.
com/dictionary/Sanctus+bell (visited on 09/15/2024).

[14] Merriam-Webster Dictionary. Definition of SANCTUS. url: https://www.merriam-webster.com/
dictionary/Sanctus (visited on 09/15/2024).

[15] Merriam-Webster Dictionary. Definition of THANE. url: https://www.merriam- webster.com/
dictionary/thane (visited on 07/18/2024).

[16] The National Bell Festival Inc. Meet St. Dunstan, Patron Saint of Bell Ringers — National Bell
Festival. url: https://www.bells.org/blog/meet-st-dunstan-patron-saint-bell-ringers (visited on
07/17/2024).

[17] The National Bell Festival Inc. Learn about the Different Parts of a Bell — National Bell Festival.
url: https://www.bells.org/activity/learn-about-different-parts-bell (visited on 09/29/2024).

[18] Merriam-Webster Dictionary. Definition of TRANSUBSTANTIATION. July 2024. url: https://
www.merriam-webster.com/dictionary/transubstantiation (visited on 09/15/2024).

[19] Stadt Zürich. Städtische Läuteordnung. June 1969. url: https://www.stadt-zuerich.ch/content/
dam/stzh/portal/Deutsch/AmtlicheSammlung/Erlasse/713/420/713.420%20St%C3%A4dtische%20L%C3%

A4uteordnung%20V1.pdf (visited on 10/15/2024).

[20] Schweiz aktuell - In Maschwanden läuten die Glocken weiterhin morgens um 04:45 - Play SRF. June 2019.
url: https://www.srf.ch/play/tv/schweiz-aktuell/video/in-maschwanden-laeuten-die-glocken-
weiterhin-morgens-um-0445?urn=urn:srf:video:dde6cbd9-1aa8-4f65-94d5-f5646d12b970 (visited on
10/15/2024).

[21] John Robert Nichols. Bells Thro’ the Ages The Founders’ Craft and Ringers’ Art. London: Chapman &
Hall Ltd., 1928.

[22] Deutsche Glockenspielvereinigung e.V.Was ist ein Carillon? Oct. 2024. url: https://glockenspieler.
de/was-ist-ein-carillon (visited on 10/11/2024).

32

https://www.academia.edu/22415048/Cum_signo_campanae_The_origin_of_the_bells_in_Europe
https://www.academia.edu/22415048/Cum_signo_campanae_The_origin_of_the_bells_in_Europe
https://www.whitingsociety.org.uk/old-ringing-books/morris-history-and-art-of-change-ringing.html
https://www.whitingsociety.org.uk/old-ringing-books/morris-history-and-art-of-change-ringing.html
https://www.whitingsociety.org.uk/old-ringing-books/papillon-church-bells-and-bell-ringing-01.pdf
https://www.whitingsociety.org.uk/old-ringing-books/papillon-church-bells-and-bell-ringing-01.pdf
https://www.whitingsociety.org.uk/old-ringing-books/papillon-church-bells-and-bell-ringing-01.pdf
https://www.youtube.com/watch?v=OR32AT1QaF8
https://www.youtube.com/watch?v=yLMiK-TMyPI
https://www.youtube.com/watch?v=yLMiK-TMyPI
https://guides.lib.uw.edu/archives/idiophones
https://www.bells.org/bell-history
https://www.bells.org/bell-history
https://archwaysmag.org/when-and-why-do-the-altar-servers-ring-a-bell-at-mass
https://archwaysmag.org/when-and-why-do-the-altar-servers-ring-a-bell-at-mass
https://www.medieval.eu/early-medieval-irish-hand-bells/
https://www.medieval.eu/early-medieval-irish-hand-bells/
https://doi.org/10.1484/J.VIATOR.1.102544
https://doi.org/10.1484/J.VIATOR.1.102544
https://www.brepolsonline.net/doi/10.1484/J.VIATOR.1.102544
https://www.etymonline.com/search?q=clock
https://www.etymonline.com/search?q=clock
https://www.merriam-webster.com/dictionary/Sanctus+bell
https://www.merriam-webster.com/dictionary/Sanctus+bell
https://www.merriam-webster.com/dictionary/Sanctus
https://www.merriam-webster.com/dictionary/Sanctus
https://www.merriam-webster.com/dictionary/thane
https://www.merriam-webster.com/dictionary/thane
https://www.bells.org/blog/meet-st-dunstan-patron-saint-bell-ringers
https://www.bells.org/activity/learn-about-different-parts-bell
https://www.merriam-webster.com/dictionary/transubstantiation
https://www.merriam-webster.com/dictionary/transubstantiation
https://www.stadt-zuerich.ch/content/dam/stzh/portal/Deutsch/AmtlicheSammlung/Erlasse/713/420/713.420%20St%C3%A4dtische%20L%C3%A4uteordnung%20V1.pdf
https://www.stadt-zuerich.ch/content/dam/stzh/portal/Deutsch/AmtlicheSammlung/Erlasse/713/420/713.420%20St%C3%A4dtische%20L%C3%A4uteordnung%20V1.pdf
https://www.stadt-zuerich.ch/content/dam/stzh/portal/Deutsch/AmtlicheSammlung/Erlasse/713/420/713.420%20St%C3%A4dtische%20L%C3%A4uteordnung%20V1.pdf
https://www.srf.ch/play/tv/schweiz-aktuell/video/in-maschwanden-laeuten-die-glocken-weiterhin-morgens-um-0445?urn=urn:srf:video:dde6cbd9-1aa8-4f65-94d5-f5646d12b970
https://www.srf.ch/play/tv/schweiz-aktuell/video/in-maschwanden-laeuten-die-glocken-weiterhin-morgens-um-0445?urn=urn:srf:video:dde6cbd9-1aa8-4f65-94d5-f5646d12b970
https://glockenspieler.de/was-ist-ein-carillon
https://glockenspieler.de/was-ist-ein-carillon

Caroline Dulay

[23] Matthias Walter. “Das Walliser Carillon”. In: (2021). url: https://www.vs.ch/documents/249470/
14131302/Das+Walliser+Carillon.pdf/7532b8a4-e9d0-74d1-6bb7-36b2e2b2ab6a?t=1648198350562

(visited on 10/11/2024).

[24] Bible Gateway passage: Psalm 22:22 - New International Version. en. url: https://www.biblegateway.
com/passage/?search=Psalm%2022%3A22&version=NIV (visited on 10/15/2024).

[25] Mark Cartwright. English Reformation - World History Encyclopedia. July 2020. url: https://www.
worldhistory.org/English_Reformation/ (visited on 09/21/2024).

[26] Kersten Knipp. When church bells were transformed into weapons of war – DW – 09/21/2018. Sept.
2018. url: https://www.dw.com/en/when-church-bells-were-transformed-into-weapons-of-war/a-
45576884 (visited on 10/10/2024).

[27] Stephen J. Thorne. The seizing of Europe’s bells. Nov. 2018. url: https://legionmagazine.com/the-
seizing-of-europes-bells/ (visited on 10/10/2024).

[28] Germanisches Nationalmuseum. Glockenlager im Hamburger Hafen. url: https : / / www . gnm . de /

objekte/glockenlager-im-hamburger-hafen (visited on 10/10/2024).

[29] The National Bell Festival Inc. When Nazis Took All the Bells — National Bell Festival. url: https:
//www.bells.org/blog/when-nazis-took-all-bells (visited on 10/10/2024).

[30] The History of Ringing. url: https://cccbr.org.uk/the-history-of-ringing/ (visited on 09/22/2024).

[31] Rev. H. Earle Bulwer. Glossary of Technical Terms. 1901. url: https://www.whitingsociety.org.
uk/old-ringing-books/bulwer-glossary-ringing-terms.html (visited on 10/11/2024).

[32] Richard Duckworth. Tintinnalogia. en. Last Modified: 2024-07-08T12:03:03.780600+00:00. 1668. url:
https://www.gutenberg.org/files/18567/18567-h/18567-h.htm (visited on 08/02/2024).

[33] Fabian Stedman. Campanalogia. Last Modified: 2024-07-30T11:45:50.723876+00:00. 1677. url: https:
//www.gutenberg.org/cache/epub/73423/pg73423-images.html (visited on 09/29/2024).

[34] Ancient Society of College Youths. url: https://www.ascy.org.uk/ (visited on 10/13/2024).

[35] The Central Council of Church Bell Ringers. url: https://cccbr.org.uk/ (visited on 10/13/2024).

[36] R. Murray Schafer. The soundscape: our sonic environment and the tuning of the world. Rochester,
Vermont: Destiny Books [u.a.], 2006. isbn: 978-0-89281-455-8.

[37] Arthur T. White. “Ringing the changes”. In: Mathematical Proceedings of the Cambridge Philosophical
Society 94.2 (Sept. 1983), pp. 203–215. issn: 0305-0041, 1469-8064. doi: 10.1017/S0305004100061053. url:
https://www.cambridge.org/core/product/identifier/S0305004100061053/type/journal_article

(visited on 06/30/2024).

[38] Jeff Ladd. 12: Extents — St Georges Bells - France’s First Set of English Change-Ringing Bells - Vernet-
les-Bains - Pyrénées Orientales. Aug. 2017. url: https://vernetbells.com/en/lessons/12-extents
(visited on 08/22/2024).

[39] Jaeyi Song and Sophia Hou. Group Theory. 2022. url: https://math.mit.edu/research/highschool/
primes/circle/documents/2022/Sophia%20&%20Jaeyi.pdf (visited on 09/02/2024).

[40] Werner Durandi et al. Formulae,Tables and Concepts:: a concise handbook of mathematics - physics
- chemistry. Accepted: 2017-06-11T14:47:20Z. Orell Füssli, 2014. isbn: 978-3-280-04084-3. url: https:
//www.research-collection.ethz.ch/handle/20.500.11850/94744 (visited on 09/07/2024).

[41] Guerino Mazzola, Maria Mannone, and Yan Pang. Cool Math for Hot Music. Computational Music
Science. Cham: Springer International Publishing, 2016. isbn: 978-3-319-42935-9 978-3-319-42937-3. doi:
10.1007/978-3-319-42937-3. url: http://link.springer.com/10.1007/978-3-319-42937-3 (visited
on 09/07/2024).

[42] John D. Dixon and Brian Mortimer. Permutation Groups. Springer-Verlag New York, Inc., 1996. isbn:
0-387-94599-7. url: https://link.springer.com/book/10.1007/978-1-4612-0731-3.

[43] Tom Denton. 3.1: Generating Sets. Nov. 2013. url: https://math.libretexts.org/Bookshelves/
Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/03%3A_Groups_

II/3.01%3A_Generating_Sets (visited on 09/08/2024).

[44] Sridher Kaminani. “Finding Hamiltionian Cycles”. In: (Aug. 2005). url: https://core.ac.uk/download/
pdf/43618678.pdf.

[45] Torsten Mütze. “Combinatorial Gray Codes–An Updated Survey”. In: (July 2024). url: https://arxiv.
org/pdf/2202.01280.

[46] Lam Duong. Johnson Trotter Algorithm - Generate Permutations. Mar. 2020. url: https://www.youtube.
com/watch?v=LBuERmz_BCM (visited on 10/09/2024).

[47] Selmer M Johnson. “Generation of Permutations by Adjacent Transposition”. In: 17 (1963), pp. 282–285.
url: https://api.semanticscholar.org/CorpusID:119440379 (visited on 10/09/2024).

33

https://www.vs.ch/documents/249470/14131302/Das+Walliser+Carillon.pdf/7532b8a4-e9d0-74d1-6bb7-36b2e2b2ab6a?t=1648198350562
https://www.vs.ch/documents/249470/14131302/Das+Walliser+Carillon.pdf/7532b8a4-e9d0-74d1-6bb7-36b2e2b2ab6a?t=1648198350562
https://www.biblegateway.com/passage/?search=Psalm%2022%3A22&version=NIV
https://www.biblegateway.com/passage/?search=Psalm%2022%3A22&version=NIV
https://www.worldhistory.org/English_Reformation/
https://www.worldhistory.org/English_Reformation/
https://www.dw.com/en/when-church-bells-were-transformed-into-weapons-of-war/a-45576884
https://www.dw.com/en/when-church-bells-were-transformed-into-weapons-of-war/a-45576884
https://legionmagazine.com/the-seizing-of-europes-bells/
https://legionmagazine.com/the-seizing-of-europes-bells/
https://www.gnm.de/objekte/glockenlager-im-hamburger-hafen
https://www.gnm.de/objekte/glockenlager-im-hamburger-hafen
https://www.bells.org/blog/when-nazis-took-all-bells
https://www.bells.org/blog/when-nazis-took-all-bells
https://cccbr.org.uk/the-history-of-ringing/
https://www.whitingsociety.org.uk/old-ringing-books/bulwer-glossary-ringing-terms.html
https://www.whitingsociety.org.uk/old-ringing-books/bulwer-glossary-ringing-terms.html
https://www.gutenberg.org/files/18567/18567-h/18567-h.htm
https://www.gutenberg.org/cache/epub/73423/pg73423-images.html
https://www.gutenberg.org/cache/epub/73423/pg73423-images.html
https://www.ascy.org.uk/
https://cccbr.org.uk/
https://doi.org/10.1017/S0305004100061053
https://www.cambridge.org/core/product/identifier/S0305004100061053/type/journal_article
https://vernetbells.com/en/lessons/12-extents
https://math.mit.edu/research/highschool/primes/circle/documents/2022/Sophia%20&%20Jaeyi.pdf
https://math.mit.edu/research/highschool/primes/circle/documents/2022/Sophia%20&%20Jaeyi.pdf
https://www.research-collection.ethz.ch/handle/20.500.11850/94744
https://www.research-collection.ethz.ch/handle/20.500.11850/94744
https://doi.org/10.1007/978-3-319-42937-3
http://link.springer.com/10.1007/978-3-319-42937-3
https://link.springer.com/book/10.1007/978-1-4612-0731-3
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/03%3A_Groups_II/3.01%3A_Generating_Sets
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/03%3A_Groups_II/3.01%3A_Generating_Sets
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/03%3A_Groups_II/3.01%3A_Generating_Sets
https://core.ac.uk/download/pdf/43618678.pdf
https://core.ac.uk/download/pdf/43618678.pdf
https://arxiv.org/pdf/2202.01280
https://arxiv.org/pdf/2202.01280
https://www.youtube.com/watch?v=LBuERmz_BCM
https://www.youtube.com/watch?v=LBuERmz_BCM
https://api.semanticscholar.org/CorpusID:119440379

Caroline Dulay

[48] Hale F. Trotter. “Algorithm 115: Perm”. In: Communications of the ACM 5.8 (Aug. 1962), pp. 434–
435. issn: 0001-0782, 1557-7317. doi: 10.1145/368637.368660. url: https://dl.acm.org/doi/10.1145/
368637.368660 (visited on 10/09/2024).

[49] Donald E. Knuth. The Art of Computer Programming. Vol. 4. 2005. isbn: 0-201-85393-0.

[50] Thonny, Python IDE for beginners. url: https://thonny.org/ (visited on 09/08/2024).

[51] Michael Galarnyk. Python Lists and List Manipulation Tutorial. url: https://builtin.com/data-
science/python-list (visited on 08/03/2024).

[52] GeeksforGeeks. Python Program to Swap Two Elements in a List. Section: Python. Nov. 2018. url:
https://www.geeksforgeeks.org/python-program-to-swap-two-elements-in-a-list/ (visited on
08/03/2024).

[53] PythonTM. ForLoop - Python Wiki. Jan. 2022. url: https://wiki.python.org/moin/ForLoop (visited
on 08/03/2024).

[54] GeeksforGeeks. Python — Convert a list of characters into a string. Section: Python. Dec. 2017. url:
https://www.geeksforgeeks.org/python-convert-list-characters-string/ (visited on 08/10/2024).

[55] CSRocks. What Is Recursion - Recursion Explained In 3 Minutes. July 2017. url: https://www.youtube.
com/watch?v=YZcO_jRhvxs (visited on 10/08/2024).

[56] Daniel Burrueco. random.randrange — Interactive Chaos. Feb. 2021. url: https://interactivechaos.
com/en/python/function/randomrandrange (visited on 10/09/2024).

[57] about - pygame wiki. url: https://www.pygame.org/wiki/about (visited on 10/09/2024).

[58] Malli. Convert List of Tuples to List of Lists in Python. Feb. 2023. url: https://sparkbyexamples.com/
python/convert-list-of-tuples-tolist-of-lists-in-python/ (visited on 08/10/2024).

[59] GeeksforGeeks. Generate all permutation of a set in Python. Section: Algorithms. Jan. 2016. url: https:
//www.geeksforgeeks.org/generate- all- the- permutation- of- a- list- in- python/ (visited on
10/08/2024).

[60] How can I randomly select an item from a list in Python? — Better Stack Community. url: https :

//betterstack.com/community/questions/python-how-to-randomly-select-list-item/ (visited on
08/10/2024).

[61] Get the size (length, number of items) of a list in Python — note.nkmk.me. Aug. 2023. url: https :

//note.nkmk.me/en/python-list-len/ (visited on 08/10/2024).

[62] GeeksforGeeks. How to Replace Values in a List in Python? Section: Python. Nov. 2021. url: https:
//www.geeksforgeeks.org/how-to-replace-values-in-a-list-in-python/ (visited on 08/10/2024).

[63] GeeksforGeeks. Python — Check if two lists are identical. Section: Python. Nov. 2018. url: https:
//www.geeksforgeeks.org/python-check-if-two-lists-are-identical/ (visited on 08/05/2024).

List of Tables

1 Assuming that 30 changes can be rung per minute, we obtain in the rightmost column the
time required to ring a given extent. cf. [1], Table 1.1 . 11

2 Some extents on n = 4 bells (Minimus) cf. [1], Table 2.4 14

List of Figures

1 Bell from Herculaneum, 1st century AD cf. [2], figure 10 2
2 The Cloc ind Édachta, the bell of St. Patrick, said to be the oldest preserved bell from

Ireland [10] . 3
3 The parts of a church bell [17] . 4
4 The largest in the belltower of Maschwanden, Switzerland Inscription: ICHWILL DEINEN

NAMEN MEINEN BRÜDERN VERKÜNDEN INMITTEN DER GERMEINDE WILL
ICH DICH LOBEN PS. 22. 23. (“I will declare your name to my people; in the assembly
I will praise you.” [24]) . 5

5 Glockenfriedhof in Hamburg’s harbor [28] . 6
6 The evolution of methods of hanging bells and up and down strokes on the different mounts

[30] . 7
7 Bell hung on a full wheel in a wooden frame [3] . 7
8 The two strokes, that can be used to ring an upset bell [3] 8

34

https://doi.org/10.1145/368637.368660
https://dl.acm.org/doi/10.1145/368637.368660
https://dl.acm.org/doi/10.1145/368637.368660
https://thonny.org/
https://builtin.com/data-science/python-list
https://builtin.com/data-science/python-list
https://www.geeksforgeeks.org/python-program-to-swap-two-elements-in-a-list/
https://wiki.python.org/moin/ForLoop
https://www.geeksforgeeks.org/python-convert-list-characters-string/
https://www.youtube.com/watch?v=YZcO_jRhvxs
https://www.youtube.com/watch?v=YZcO_jRhvxs
https://interactivechaos.com/en/python/function/randomrandrange
https://interactivechaos.com/en/python/function/randomrandrange
https://www.pygame.org/wiki/about
https://sparkbyexamples.com/python/convert-list-of-tuples-tolist-of-lists-in-python/
https://sparkbyexamples.com/python/convert-list-of-tuples-tolist-of-lists-in-python/
https://www.geeksforgeeks.org/generate-all-the-permutation-of-a-list-in-python/
https://www.geeksforgeeks.org/generate-all-the-permutation-of-a-list-in-python/
https://betterstack.com/community/questions/python-how-to-randomly-select-list-item/
https://betterstack.com/community/questions/python-how-to-randomly-select-list-item/
https://note.nkmk.me/en/python-list-len/
https://note.nkmk.me/en/python-list-len/
https://www.geeksforgeeks.org/how-to-replace-values-in-a-list-in-python/
https://www.geeksforgeeks.org/how-to-replace-values-in-a-list-in-python/
https://www.geeksforgeeks.org/python-check-if-two-lists-are-identical/
https://www.geeksforgeeks.org/python-check-if-two-lists-are-identical/

Caroline Dulay

9 Blue bell plain hunting . 9
10 Green and red bell dodging . 9
11 Illustration of three function types: injective, surjective and bijective cf. [41], Figure 4.6 . 12
12 The 3-bell Cayley graph CS(S3), where rounds are at the bottom left vertex and marked

in blue. cf. [1], Figure 3.1 . 15
13 Verticies of the Cayley graph of CS(S4), showing the change corresponding to each vertex.

Rounds are marked in blue and framed with a box. 16
14 The 4-bell Cayley graph CS(S4) cf. [1], Figure 3.2 . 17
15 Here, the upper-left vertex of the inner hexagon of CS(S4) is labeled by rounds in dark

sky blue, so it is the start for all Hamiltonian cycles. The extents shown here are: Plain
Bob Minimus (((AB)3AC)3), Reverse Bob Minimus ((ABAD(AB)2)3), Double Bob Min-
imus ((ABADABAC)3), Canterbury Minimus ((ABCDCBAB)3), Reverse Canterbury
Minimus ((DB(AB)2DC)3) (as seen in example 3.2.8)6, Double Canterbury Minimus
((DBCDCBDC)3), Single Court Minimus ((DB(AB)2DB)3), Reverse Court Minimus
((AB(CB)2AB)3), Double Court Minimus ((DB(CB)2DB)3), St. Nicholas Minimus
((DBADABDC)3) and to Reverse St. Nicholas Minimus ((ABCDCBAC)3). cf. [1],
Figure 3.4 . 18

16 The Cayley graphs of the eight variants of the Plain Bob Minimus 29
17 Link to a demonstration of the program in action . 30

Acknowledgments

Special thanks to Gregory Bloch for the idea for this project and to my supervisor Mr. Pfenninger for pa-
tiently answering my many questions. I would also like to thank Silvia Bachmann and the Kirchenkomis-
sion of Maschwanden, for letting me record the bells of the church in Maschwanden. I am very grateful
to my father, Daniel Dulay, for helping me with the programming, and to my mother, Susannah Bloch,
for proofreading and correcting the final paper. Thank you also to my other proofreaders Sheri Bloch,
Sombo Em and Daniel Holzner.

Einhaltung rechtlicher Vorgaben

Ich habe die Arbeit selbstständig und unter Aufsicht meines Betreuers/meiner Betreuerin verfasst und
keine anderen als die angegebenen Hilfsmittel verwendet.

Abschnitte, für deren Erstellung KI-Programme (bspw. ChatGPT) zum Einsatz kamen, habe ich allesamt
offengelegt und mit einer entsprechenden Fussnote versehen. Meine Arbeit wird gegebenenfalls einer
Prüfung bezüglich KI-Einsatz unterzogen; im Rahmen dieser Prüfung wird festgestellt, ob die Arbeit
neben den angegebenen Stellen weitere von einer KI verfasste Elemente enthält.

Ich nehme darüber hinaus zur Kenntnis, dass meine Arbeit zur Überprüfung der korrekten und vollständi-
gen Angabe der Quellen mit Hilfe einer Software (eines Plagiaterkennungstools) geprüft wird. Zu meinem
eigenen Schutz wird diese Software auch dazu verwendet, später eingereichte Arbeiten mit meiner Arbeit
elektronisch zu vergleichen und damit Abschriften und eine Verletzung meines Urheberrechts zu verhin-
dern. Ich erkläre mich damit einverstanden, dass die Schulleitung bei Verdacht auf Urheberrechtsverlet-
zung meine Arbeit zu Prüfzwecken herausgibt..

Datum, Unterschrift

35

https://youtu.be/3wbyjMRfHWE

Caroline Dulay

A Appendix: Full Process of Programming

A.1 Starting With Changes on 3 Bells

A.1.1 Printing a List

1 z = [1, 2, 3] #define a list

2 print(z)

[51]

A.1.2 Swapping the Positions of Two Items in a List

1 def swapPositions(z, pos1, pos2):

2

3 # Storing the two elements as a pair in a tuple variable as get

4 get = z[pos1], z[pos2]

5

6 # unpacking those elements

7 z[pos2], z[pos1] = get

8

9 return z

10

11 z = [1, 2, 3]

12 pos1, pos2 = 0, 1

13

14 print(z)

15 print(swapPositions(z, pos1, pos2))

A.1.3 Extent on 3 Bells

1 def swapPositions(z, pos1, pos2):

2 get = z[pos1], z[pos2]

3 z[pos2], z[pos1] = get

4 return z

5

6 z = [1, 2, 3]

7 pos1, pos2 = 0, 1

8

9 print(z)

10 print(swapPositions(z, pos1, pos2))

11 print(swapPositions(z, pos1+1, pos2+1))

12 print(swapPositions(z, pos1, pos2))

13 print(swapPositions(z, pos1+1, pos2+1))

14 print(swapPositions(z, pos1, pos2))

15 print(swapPositions(z, pos1+1, pos2+1))

16 #Full change on 3 bells

A.1.4 Extent on 3 Bells With Loop

1 def swapPositions(z, pos1, pos2):

2 get = z[pos1], z[pos2]

3 z[pos2], z[pos1] = get

4 return z

5

6 def swap01():

7 print(swapPositions(z, pos1, pos2))

8

9 def swap12():

10 print(swapPositions(z, pos1+1, pos2+1))

11

12 z1 = [1, 2, 3]

13 z = [1, 2, 3]

14 pos1, pos2 = 0, 1

15

16 print(z)

17 for i in range(10):

18 swap01()

19 swap12()

20 if z != z1:

21 continue

22 else:

36

Caroline Dulay

23 break

[53]

A.2 Programmed Extents on 4 Bells

A.2.1 Plain Bob

1 def swapPositions(z, pos1, pos2):

2 get = z[pos1], z[pos2]

3 z[pos2], z[pos1] = get

4 return z

5

6 def swap0123():

7 swapPositions(z, pos1, pos2-1)

8 print(swapPositions(z, pos2, pos2+1))

9

10 def swap12():

11 print(swapPositions(z, pos1+1, pos2))

12

13 def swap23():

14 print(swapPositions(z, pos2, pos2+1))

15

16 def swap01():

17 print(swapPositions(z, pos1, pos2-1))

18

19 z1 = [1, 2, 3, 4]

20 z = [1, 2, 3, 4]

21 pos1, pos2 = 0, 2

22

23 print(z)

24 for i in range(10):

25 for i in range(3):

26 swap0123()

27 swap12()

28 swap0123()

29 swap23()

30 if z != z1:

31 continue

32 else:

33 break

34 print(’done.’)

A.2.2 Reverse Canterbury

1 def swapPositions(z, pos1, pos2):

2 get = z[pos1], z[pos2]

3 z[pos2], z[pos1] = get

4 return z

5

6 def swap0123():

7 swapPositions(z, pos1, pos2-1)

8 print(swapPositions(z, pos2, pos2+1))

9

10 def swap12():

11 print(swapPositions(z, pos1+1, pos2))

12

13 def swap23():

14 print(swapPositions(z, pos2, pos2+1))

15

16 def swap01():

17 print(swapPositions(z, pos1, pos2-1))

18

19 z1 = [1, 2, 3, 4]

20 z = [1, 2, 3, 4]

21 pos1, pos2 = 0, 2

22

23 print(z)

24 for i in range(10):

25 swap01()

26 swap12()

27 swap0123()

28 swap12()

37

Caroline Dulay

29 swap0123()

30 swap12()

31 swap01()

32 swap23()

33 if z != z1:

34 continue

35 else:

36 break

37 print(’done.’)

38

A.2.3 Double Court

1 def swapPositions(z, pos1, pos2):

2 get = z[pos1], z[pos2]

3 z[pos2], z[pos1] = get

4 return z

5

6 def swap0123():

7 swapPositions(z, pos1, pos2-1)

8 print(swapPositions(z, pos2, pos2+1))

9

10 def swap12():

11 print(swapPositions(z, pos1+1, pos2))

12

13 def swap23():

14 print(swapPositions(z, pos2, pos2+1))

15

16 def swap01():

17 print(swapPositions(z, pos1, pos2-1))

18

19 z1 = [1, 2, 3, 4]

20 z = [1, 2, 3, 4]

21 pos1, pos2 = 0, 2

22

23 print(z)

24 for i in range(10):

25 swap01()

26 swap12()

27 for n in range(2):

28 swap23()

29 swap12()

30 swap01()

31 swap12()

32 if z != z1:

33 continue

34 else:

35 break

36 print(’done.’)

A.3 Generating a Random Set of Changes

A.3.1 Create Change on 3 Bells

1 def swapPositions(z, pos1, pos2):

2 get = z[pos1], z[pos2]

3 z[pos2], z[pos1] = get

4 return z

5

6 def swap01():

7 print(swapPositions(z, pos1, pos2))

8 already_done.append(z.copy())

9

10 def swap12():

11 print(swapPositions(z, pos1+1, pos2+1))

12 already_done.append(z.copy())

13

14 z1 = [1, 2, 3]

15 z = [1, 2, 3] #define a list

16 pos1, pos2 = 0, 1

17 already_done = []

18

19 print(z)

38

Caroline Dulay

20 for i in range(10):

21 swap01()

22 swap12()

23 if z != z1:

24 continue

25 else:

26 break

27

28 print(’we done’)

29

30 print(already_done)

31 already_done.sort() #sort list so it’s the same to compare?

32 print(already_done)

33 print(’mmm’)

34

35 from itertools import permutations

36

37 perm = permutations([1, 2, 3])

38 perm_list_tuple = list(perm)

39 perm_list_list = []

40 for tup in perm_list_tuple:

41 perm_list_list.append(list(tup))

42 print(perm_list_list)

43

44 if perm_list_list == already_done:

45 print(’weee’)

46 else:

47 print(’not quite’)

48

[58][59]

A.3.2 Creating a Random Set of Changes on 3 Bells

1 import random

2 from itertools import permutations

3

4

5 def swapPositions(z, pos1, pos2):

6 get = z[pos1], z[pos2]

7 z[pos2], z[pos1] = get

8 return z

9

10 def swap(pos):

11 print(swapPositions(z, pos+1, pos))

12 already_done.append(z.copy())

13

14 all_possible_swaps = [0, 1]

15

16 def randomswap1(possible_swaps):

17 selected_swap1 = random.choice(possible_swaps)

18 print("selected swap = ",selected_swap1)

19 swap(selected_swap1)

20 next_swaps = all_possible_swaps.copy()

21 next_swaps.remove(selected_swap1)

22 return next_swaps

23

24 z1 = [1, 2, 3]

25 z = [1, 2, 3]

26 already_done = []

27

28 print(z)

29 next = randomswap1(all_possible_swaps)

30 for i in range(44):

31 next = randomswap1(next)

32 if z != z1:

33 continue

34 else:

35 break

36

37 print(’we done’)

38

39

Caroline Dulay

39 print(already_done)

40 already_done.sort()

41 print("sorted:", already_done)

42

43

44 perm = permutations([1, 2, 3])

45 perm_list_tuple = list(perm)

46 perm_list_list = []

47 for tup in perm_list_tuple:

48 perm_list_list.append(list(tup))

49 print(perm_list_list)

50

51 if perm_list_list == already_done:

52 print(’the same’)

53 else:

54 print(’not quite’)

[60]

A.3.3 Random Changes on 4 Bells of a Random Length

1 from itertools import permutations

2 import random

3

4 def swapPositions(z, pos1, pos2):

5 get = z[pos1], z[pos2]

6 z[pos2], z[pos1] = get

7

8 return z

9

10 def swap(pos):

11 if pos == 3:

12 swapPositions(z, pos-3, pos-2)

13 print(swapPositions(z, pos-1, pos))

14 already_done.append(z.copy())

15 else:

16 print(swapPositions(z, pos+1, pos))

17 already_done.append(z.copy())

18

19 all_possible_swaps = [0, 1, 2, 3]

20

21 def randomswap(possible_swaps):

22 selected_swap1 = random.choice(possible_swaps)

23 #print("selected swap = ",selected_swap1)

24 swap(selected_swap1)

25 Transition.append(selected_swap1)

26 next_swaps = all_possible_swaps.copy()

27 next_swaps.remove(selected_swap1)

28 return next_swaps

29

30 def convert(s):

31 str1 = ""

32 return(str1.join(s))

33

34 z1 = [1, 2, 3, 4]

35 z = [1, 2, 3, 4]

36 already_done = []

37 Transition = []

38

39 print(z)

40 next = randomswap(all_possible_swaps)

41 for i in range(100):

42 next = randomswap(next)

43 if z != z1:

44 continue

45 else:

46 print("we’re back at the start")

47 break

48

49 print(already_done)

50 already_done.sort()

51 print("sorted:", already_done)

52 print("length:", len(already_done))

40

Caroline Dulay

53

54 for i in range(len(Transition)): # for same notation as campanology

55 if Transition[i] == 0:

56 Transition[i] = ’D’

57 if Transition[i] == 2:

58 Transition[i] = ’C’

59 if Transition[i] == 1:

60 Transition[i] = ’B’

61 if Transition[i] == 3:

62 Transition[i] = ’A’

63 print("A = (12)(34), B = (23), C = (34), D = (12)")

64 print("change:", convert(Transition))

65

66

67 perm = permutations([1, 2, 3, 4])

68 perm_list_tuple = list(perm)

69 perm_list_list = []

70 for tup in perm_list_tuple:

71 perm_list_list.append(list(tup))

72 print("all permutations:", perm_list_list)

73 print("how many permutations?", len(perm_list_list))

74

75 if perm_list_list == already_done:

76 print(’The lists are the same’)

77 else:

78 print(’The lists are not quite the same’)

[61][62]

Example shell7:

1 [1, 2, 3, 4]

2 we’re back at the start

3 [[1, 3, 2, 4], [3, 1, 4, 2], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 3, 2], [1, 4, 2, 3],

4 [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 1, 4], [3, 1, 2, 4], [3, 1, 4, 2],

5 [3, 4, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1],

6 [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [4, 3, 1, 2], [4, 3, 2, 1],

7 [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 4, 2], [1, 3, 2, 4], [1, 2, 3, 4]]

8 sorted: [[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 2, 4], [1, 3, 4, 2],

9 [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 3, 1, 4], [2, 3, 4, 1],

10 [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 1, 4, 2], [3, 1, 4, 2],

11 [3, 2, 1, 4], [3, 2, 1, 4], [3, 2, 4, 1], [3, 4, 1, 2], [3, 4, 1, 2], [3, 4, 1, 2],

12 [3, 4, 2, 1], [4, 1, 3, 2], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1], [4, 3, 2, 1]]

13 length: 29

14 A = (12)(34), B = (23), C = (34), D = (12)

15 change: BADBDABABDBCBCBCABCABADCABDCB

16 all permutations: [[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2],

17 [1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 1, 4, 3], [2, 3, 1, 4], [2, 3, 4, 1],

18 [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1],

19 [3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1],

20 [4, 3, 1, 2], [4, 3, 2, 1]]

21 how many permutations? 24

22 The lists are not quite the same

A.4 Extents on 4 Bells

A.4.1 Program Finds All Possible Extents on 4 Bells

1 #!/usr/bin/python3

2

3 from itertools import permutations

4 import random

5

6 # def convert(s):

7 # str1 = ""

8 # return(str1.join(s))

9

10 def swapPositions(r, pos1, pos2):

11 get = r[pos1], r[pos2]

12 r[pos2], r[pos1] = get

7For the example shell the prints on lines 13 and 16 were taken out leaving just the list already_done to be printed to
show, what permutations it went through.

41

Caroline Dulay

13 return r

14

15 def swap(row, pos):

16 new_row = row.copy()

17 if pos == 3:

18 swapPositions(new_row, pos-3, pos-2)

19 swapPositions(new_row, pos-1, pos)

20 # already_done.append(new_row.copy())

21 else:

22 swapPositions(new_row, pos+1, pos)

23 # already_done.append(row.copy())

24 return new_row

25

26 #def pos_change_check(previous_rows: list[list[int]], next_row: list[int], pos)

27

28

29 def test_rows(previous_rows: list[list[int]], next_row: list[int]) -> bool:

30 if len(previous_rows) != 24 and next_row in previous_rows:

31 return False

32

33 for i in range(len(next_row)):

34 if (previous_rows[-2][i] == previous_rows[-1][i] and

35 previous_rows[-2][i] == next_row[i]):

36 return False

37 else: return True

38

39 all_possible_pos = [0, 1, 2, 3]

40

41 def intersection(lst1, lst2):

42 lst3 = [value for value in lst1 if value in lst2]

43 return lst3

44

45 def extend_rows(rows: list[list[int]], positions: list[int], avail_pos:

46 list[int]) -> tuple[list[list[list[int]]], list[list[int]]]:

47 result: list[list[list[int]]] = []

48 result_pos: list[list[int]] = []

49 if len(rows) == 25 and rows[-1] == [1, 2, 3, 4]:

50 # print(f’found it {rows}’)

51 return [rows], [positions]

52 if len(rows) >= 25:

53 # print(f’overdone {rows}’)

54 return result, result_pos

55 for pos in avail_pos:

56 # print(f’testing {rows} move {pos}’)

57 new_row = swap(rows[-1], pos)

58 if test_rows(rows, new_row):

59 # print(f’{len(rows)} - extending {rows} with {new_row}.’)

60 new_rows = rows.copy()

61 new_rows.append(new_row)

62 new_positions = positions.copy()

63 new_positions.append(pos)

64 all_possible_pos.copy()

65 new_avail_pos = all_possible_pos.copy()

66 new_avail_pos.remove(pos)

67 new_result, new_result_pos = extend_rows(new_rows, new_positions, new_avail_pos)

68 if new_result:

69 result.extend(new_result)

70 result_pos.extend(new_result_pos)

71

72 return result, result_pos

73

74 def Translate_pos_alphabet(pos_list: list[int]) -> list[str]:

75 alpha_pos_list: list[str] = []

76 alpha_pos_map = {0: ’D’, 1: ’B’, 2: ’C’, 3: ’A’}

77 for pos in pos_list:

78 alpha_pos_list.append(alpha_pos_map[pos])

79 return alpha_pos_list

80

81

82 z1 = [1, 2, 3, 4]

83 z = [1, 2, 3, 4]

84 Len_int_ad = [0]

85 already_done = []

42

Caroline Dulay

86 Transition = []

87

88 print("possible permutations:")

89 perm = permutations([1, 2, 3, 4])

90 perm_list_tuple = list(perm)

91 perm_list_list = []

92 for tup in perm_list_tuple:

93 perm_list_list.append(list(tup))

94 print("all permutations:", perm_list_list)

95 print("how many permutations?", len(perm_list_list))

96

97

98 # Main loop to build extents.

99 final_result: list[list[list[int]]] = []

100 final_result_pos: list[list[int]] = []

101 for pos in all_possible_pos:

102 print(f’Starting with move {pos}’)

103 new_row = swap(z, pos)

104 new_avail_pos = all_possible_pos.copy()

105 new_avail_pos.remove(pos)

106 new_result, new_result_pos = extend_rows([z, new_row], [pos], new_avail_pos)

107 if new_result:

108 final_result.extend(new_result)

109 final_result_pos.extend(new_result_pos)

110

111 print("A = (12)(34), B = (23), C = (34), D = (12)")

112 for i in range(len(final_result)):

113 print(f’{Translate_pos_alphabet(final_result_pos[i])}’)

114 print(f’{final_result[i]}’)

[52][54][63]

A.4.2 Program Finds Extents on 4 Bells With Sounds

1 from itertools import permutations

2 import random

3 from pygame import mixer

4 from pygame import time

5

6 def swapPositions(r, pos1, pos2):

7 get = r[pos1], r[pos2]

8 r[pos2], r[pos1] = get

9

10 return r

11

12 def swap(row, pos):

13 new_row = row.copy()

14 if pos == 3:

15 swapPositions(new_row, pos-3, pos-2)

16 swapPositions(new_row, pos-1, pos)

17 # already_done.append(new_row.copy())

18 else:

19 swapPositions(new_row, pos+1, pos)

20 # already_done.append(row.copy())

21 return new_row

22

23 def test_rows(previous_rows: list[list[int]], next_row: list[int]) -> bool:

24 if len(previous_rows) != 24 and next_row in previous_rows:

25 return False

26

27 for i in range(len(next_row)):

28 if (previous_rows[-2][i] == previous_rows[-1][i] and

29 previous_rows[-2][i] == next_row[i]):

30 return False

31

32 else: return True

33

34 all_possible_pos = [0, 1, 2, 3]

35

36 def extend_rows(rows: list[list[int]], positions: list[int], avail_pos:

37 list[int]) -> tuple[list[list[list[int]]], list[list[int]]]:

38 result: list[list[list[int]]] = []

39 result_pos: list[list[int]] = []

43

Caroline Dulay

40 if len(rows) == 25 and rows[-1] == [1, 2, 3, 4]:

41 # print(f’found it {rows}’)

42 return [rows], [positions]

43 if len(rows) >= 25:

44 print(f’overdone {rows}’)

45 return result, result_pos

46 for pos in avail_pos:

47 # print(f’testing {rows} move {pos}’)

48 new_row = swap(rows[-1], pos)

49 if test_rows(rows, new_row):

50 # print(f’{len(rows)} - extending {rows} with {new_row}.’)

51 new_rows = rows.copy()

52 new_rows.append(new_row)

53 new_positions = positions.copy()

54 new_positions.append(pos)

55 all_possible_pos.copy()

56 new_avail_pos = all_possible_pos.copy()

57 new_avail_pos.remove(pos)

58 new_result, new_result_pos = extend_rows(new_rows, new_positions, new_avail_pos)

59 if new_result:

60 result.extend(new_result)

61 result_pos.extend(new_result_pos)

62

63 return result, result_pos

64

65 def convert(s):

66 str1 = ""

67 return(str1.join(s))

68

69 def Translate_pos_alphabet(pos_list: list[int]) -> list[str]:

70 alpha_pos_list: list[str] = []

71 alpha_pos_map = {0: ’D’, 1: ’B’, 2: ’C’, 3: ’A’}

72 for pos in pos_list:

73 alpha_pos_list.append(alpha_pos_map[pos])

74 return alpha_pos_list

75

76

77 z1 = [1, 2, 3, 4]

78 z = [1, 2, 3, 4]

79 Len_int_ad = [0]

80 already_done = []

81 Transition = []

82

83 print("possible permutations:")

84 perm = permutations([1, 2, 3, 4])

85 perm_list_tuple = list(perm)

86 perm_list_list = []

87 for tup in perm_list_tuple:

88 perm_list_list.append(list(tup))

89 print("all permutations:", perm_list_list)

90 print("how many permutations?", len(perm_list_list))

91

92

93 # Main loop to build extents.

94 final_result: list[list[list[int]]] = []

95 final_result_pos: list[list[int]] = []

96 for pos in all_possible_pos:

97 #print(f’Starting with move {pos}’)

98 new_row = swap(z, pos)

99 new_avail_pos = all_possible_pos.copy()

100 new_avail_pos.remove(pos)

101 new_result, new_result_pos = extend_rows([z, new_row], [pos], new_avail_pos)

102 if new_result:

103 final_result.extend(new_result)

104 final_result_pos.extend(new_result_pos)

105

106 print("A = (12)(34), B = (23), C = (34), D = (12)")

107 #for i in range(len(final_result)):

108 # print(f’{Translate_pos_alphabet(final_result_pos[i])}’)

109 # print(f’{final_result[i]}’)

110 print("number of valid extents:", len(final_result))

111

112 choice = random.randrange(len(final_result))

44

Caroline Dulay

113

114 print("randomly chose:", choice)

115 print(f’{convert(Translate_pos_alphabet(final_result_pos[choice]))}’)

116 print(f’{final_result[choice]}’)

117 chosen = final_result[choice]

118

119 mixer.init()

120 soundfiles = ["Treble1.mp3", "Bell2.mp3", "Bell3.mp3", "Tenor4.mp3"]

121 sounds = []

122 for s in soundfiles:

123 sounds.append(mixer.Sound(s))

124

125 def output(bell_output):

126 for i, bell in enumerate(bell_output):

127 print(bell, end = " ")

128 mixer.Channel(i).play(sounds[bell - 1])

129 time.wait(1000)

130 print("\n", end = "")

131

132 for i in chosen:

133 output(i)

134 print("we done")

135 time.wait(1000)

136 mixer.quit()

A.4.3 Output Printing All Extents

For demonstration purposes, the shell from the program without the audio, but all of the extents and
their transitions:

possible permutations:

all permutations: [[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2],

[2, 1, 3, 4], [2, 1, 4, 3], [2, 3, 1, 4], [2, 3, 4, 1], [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2],

[3, 2, 1, 4], [3, 2, 4, 1], [3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1],

[4, 3, 1, 2], [4, 3, 2, 1]]

how many permutations? 24

A = (12)(34), B = (23), C = (34), D = (12)

DABABABADABABABADABABABA

[[1, 2, 3, 4], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1],

[2, 3, 1, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1], [4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2],

[3, 1, 2, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

DABACABADABACABADABACABA

[[1, 2, 3, 4], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [4, 1, 3, 2], [4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2],

[3, 1, 2, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 3, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1],

[2, 3, 1, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1], [4, 2, 1, 3], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

BADABABABADABABABADABABA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1],

[4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2], [4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4],

[3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

BADABACABADABACABADABACA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 3, 1, 4],

[3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 4, 3, 1],

[4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2], [4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 1, 4, 3],

[1, 2, 3, 4]]

BABADABABABADABABABADABA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 1, 3, 2],

[1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 4, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4],

[1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [4, 2, 1, 3], [2, 4, 3, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

BABABADABABABADABABABADA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [4, 2, 1, 3],

[2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [1, 4, 2, 3],

[4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

BABABACABABABACABABABACA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 4, 3, 1],

[4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 3, 1, 4],

[3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 1, 4, 3],

[1, 2, 3, 4]]

BABACABABABACABABABACABA

45

Caroline Dulay

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 3, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1],

[2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [4, 1, 3, 2], [4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2],

[3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1], [4, 2, 1, 3], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

BACABADABACABADABACABADA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [1, 4, 2, 3],

[4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [4, 2, 1, 3],

[2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

BACABABABACABABABACABABA

[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 4, 2], [3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [4, 2, 1, 3],

[2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3],

[4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

CABADABACABADABACABADABA

[[1, 2, 3, 4], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 4, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4],

[1, 3, 4, 2], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 1, 3, 2],

[1, 4, 2, 3], [1, 4, 3, 2], [4, 1, 2, 3], [4, 2, 1, 3], [2, 4, 3, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

CABABABACABABABACABABABA

[[1, 2, 3, 4], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 1, 3, 2],

[1, 4, 2, 3], [1, 4, 3, 2], [4, 1, 2, 3], [4, 2, 1, 3], [2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4],

[1, 3, 4, 2], [1, 3, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 1, 3], [2, 1, 4, 3],

[1, 2, 3, 4]]

ADABABABADABABABADABABAB

[[1, 2, 3, 4], [2, 1, 4, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2],

[4, 1, 3, 2], [1, 4, 2, 3], [4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1],

[2, 4, 3, 1], [4, 2, 1, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

ADABACABADABACABADABACAB

[[1, 2, 3, 4], [2, 1, 4, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 4, 1], [3, 2, 1, 4], [2, 3, 4, 1],

[2, 4, 3, 1], [4, 2, 1, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 4, 2, 1], [4, 3, 1, 2],

[4, 1, 3, 2], [1, 4, 2, 3],[4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2], [3, 1, 2, 4], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

ABADABABABADABABABADABAB

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [2, 4, 3, 1], [4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2],

[1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3],

[1, 4, 2, 3], [4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

ABADABACABADABACABADABAC

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [2, 4, 3, 1], [4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2],

[1, 4, 2, 3], [4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3],

[1, 2, 3, 4]]

ABABADABABABADABABABADAB

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [4, 3, 1, 2], [3, 4, 2, 1],

[3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [4, 1, 3, 2], [1, 4, 3, 2], [4, 1, 2, 3],

[4, 2, 1, 3], [2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4], [1, 3, 4, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

ABABABADABABABADABABABAD

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [4, 2, 1, 3], [2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4],

[2, 3, 1, 4], [3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4],

[1, 2, 3, 4]]

ABABABACABABABACABABABAC

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 3, 4, 2], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1], [4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2],

[1, 4, 2, 3], [4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1], [3, 2, 4, 1], [2, 3, 1, 4], [2, 1, 3, 4], [1, 2, 4, 3],

[1, 2, 3, 4]]

ABABACABABABACABABABACAB

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 4, 2, 1], [4, 3, 1, 2],

[4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4], [2, 3, 1, 4], [3, 2, 4, 1], [3, 2, 1, 4], [2, 3, 4, 1],

[2, 4, 3, 1], [4, 2, 1, 3], [4, 1, 2, 3], [1, 4, 3, 2], [1, 3, 4, 2], [3, 1, 2, 4], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

ABACABADABACABADABACABAD

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 2, 1, 3], [2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4],

[2, 3, 1, 4], [3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4],

[1, 2, 3, 4]]

ABACABABABACABABABACABAB

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3], [4, 2, 3, 1], [4, 2, 1, 3], [2, 4, 3, 1], [2, 3, 4, 1], [3, 2, 1, 4],

[3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3], [4, 1, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [2, 1, 3, 4],

[2, 3, 1, 4], [3, 2, 4, 1], [3, 4, 2, 1], [4, 3, 1, 2], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

46

Caroline Dulay

[1, 2, 3, 4]]

ACABADABACABADABACABADAB

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [4, 1, 3, 2], [1, 4, 3, 2], [4, 1, 2, 3],

[4, 2, 1, 3], [2, 4, 3, 1], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [4, 3, 1, 2], [3, 4, 2, 1],

[3, 2, 4, 1], [2, 3, 1, 4], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4], [1, 3, 4, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

ACABABABACABABABACABABAB

[[1, 2, 3, 4], [2, 1, 4, 3], [2, 1, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [4, 1, 3, 2], [4, 3, 1, 2], [3, 4, 2, 1],

[3, 2, 4, 1], [2, 3, 1, 4], [2, 3, 4, 1], [3, 2, 1, 4], [3, 1, 2, 4], [1, 3, 4, 2], [1, 4, 3, 2], [4, 1, 2, 3],

[4, 2, 1, 3], [2, 4, 3, 1], [2, 4, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1], [3, 4, 1, 2], [3, 1, 4, 2], [1, 3, 2, 4],

[1, 2, 3, 4]]

number of valid extents: 24

47

	Abstract
	Introduction
	History
	A Short History of Bells
	The Earliest Bells in Asia
	Beginnings of Bells in Europe
	Bells in Early Christianity
	Bells on the British Isles

	Bells in the Middle Ages
	Casting and Hanging Bells in the Middle Ages
	Importance of Bells in the Middle Ages
	St. Dunstan of Canterbury

	Bells in the Modern Day and Other Uses for Bells
	Baptism of a Bell
	Carillons
	Decorations and Inscriptions on Bells
	Bell Demise

	The History and Practice of Change Ringing
	The Beginnings of Change Ringing
	Basic Ringing
	Methods
	Change Ringing Societies
	Is Change Ringing Music?

	Mathematics
	Basic Definitions of Change Ringing
	Excursion into Group Theory
	Graphical Illustration
	Examples for 4 Bells

	Finding Hamiltonian Cycles

	Programming
	Beginning to Program
	Programming Changes “by Hand”
	Change on 3 Bells
	Change on 4 Bells (Reverse Canterbury)

	Random sequences
	Function to Swap Items: swap(pos)
	Choose Random Swap: randomswap(possible_swaps)
	List to Word: convert(s)
	Main Loop
	Checking Whether a Sequence is an Extent
	Output

	Program to Find Valid Extents on 4 Bells
	Function to Test Rows: test_rows
	Function to Build Extents: extend_rows
	Main Loop to Build Extents
	Output
	Audio

	Discussion and Conclusions
	References
	List of Tables
	List of Figures
	Acknowledgments
	Einhaltung rechtlicher Vorgaben
	Appendix: Full Process of Programming
	Starting With Changes on 3 Bells
	Printing a List
	Swapping the Positions of Two Items in a List
	Extent on 3 Bells
	Extent on 3 Bells With Loop

	Programmed Extents on 4 Bells
	Plain Bob
	Reverse Canterbury
	Double Court

	Generating a Random Set of Changes
	Create Change on 3 Bells
	Creating a Random Set of Changes on 3 Bells
	Random Changes on 4 Bells of a Random Length

	Extents on 4 Bells
	Program Finds All Possible Extents on 4 Bells
	Program Finds Extents on 4 Bells With Sounds
	Output Printing All Extents

